

 WhizBase is programming
language tailor-made for easy
development of dynamic web

content. Although it can be used for
building any kind of web site or web

application, it stands out with its

simplicity of publishing databases
on-line. It uses simple syntax to
accomplish complex tasks. The

results produced by using it
significantly exceed the invested
resources.WhizBase is actually a

script interpreter, which means that
its programming instructions are
not compiled, but interpreted at

runtime.

WhizBase
User's manual

Faik Djikic (February 2015)

for WhizBase 7.6.0.24

1. Introduction... 16

2. What is WhizBase ... 16

3. What's new in version 7 .. 17

4. Technical information .. 17

5. Virtual directories ... 18

6. CGI mode .. 19

7. Test mode ... 19

8. Escape characters ... 19

9. Comments ... 20

10. Subroutines ... 21

11. Exceptions ... 21

12. Path rules .. 21

13. Installation .. 22

13.1 Installing WhizBase on Windows with Abyss Web Server 22

13.2 Installing WhizBase on Windows with Apache ... 24

13.3 Windows NT/2000/2003 and IIS 4, 5, 6 or newer and PWS 4 on NT
Workstation or W2K non server editions ... 24

13.4 IIS 7 .. 25

13.5 Installing WhizBase on Windows with Netscape servers. 25

13.6 Installing WhizBase on Windows with OmniHTTPd Server 25

13.7 Installing WhizBase on Windows with Xitami .. 26

14. WBSP Server Side Configuration (wbsp.ssc) ... 27

14.1 Default section ... 27

14.2 Registration section .. 27

14.3 Server configuration section .. 27

14.4 Servers (virtual hosts) section.. 28

14.5 Server configuration variables .. 29

14.5.1 AbsolutePath .. 29

14.5.2 ActivateCGIByExt.. 29

14.5.3 ADOConnectionString .. 30

14.5.4 AllowedPaths .. 30

14.5.5 CacheDir ... 30

14.5.6 CGISecurityString ... 30

14.5.7 DefaultDocument .. 31

14.5.8 Developer .. 31

14.5.9 DisableWB ... 31

14.5.10 Execute ... 31

14.5.11 FileCommands .. 31

14.5.12 HiddenEnvVars ... 32

14.5.13 HideDocuments .. 32

14.5.14 MaxInstances ... 32

14.5.15 RegCode .. 32

14.5.16 ScriptTimeOutSec ... 32

14.5.17 SessionFile ... 33

14.5.18 SessionIdleTime.. 33

14.5.19 TimeOutSec ... 33

14.5.20 Upload... 33

14.5.21 UseServerKey ... 33

14.5.22 VirtualDirHomeRef .. 33

15. Getting started ... 34

15.1 Your first WBSP page .. 34

15.2 Something useful ... 34

15.3 Simple database example .. 35

16. How to... ... 38

16.1 The simplest database example .. 38

16.2 1-2-3 example ... 39

16.3 Displaying formatted records from database table 39

16.4 Displaying records from joined tables .. 40

16.5 Creating search form .. 41

16.6 Displaying records in XML format .. 42

16.7 Simple upload example ... 43

16.8 Advanced upload example ... 44

17. WhizBase Report Template (WBSP file) .. 45

17.1 Configuration section .. 47

17.2 Top section ... 48

17.3 Detail section ... 49

17.4 Header and Footer sections ... 50

17.5 Bottom section .. 51

17.6 WhizBase SubReports ... 52

18. Configuraton section subsections .. 55

18.1 Subsection [Include] ... 55

18.1.1 Default.inc ... 56

18.2 Subsection [FormFields] .. 56

18.3 Subsection [Upload] ... 57

18.4 Subsection [MsgAndLbl] .. 58

18.5 Section [UserData] ... 59

18.6 Section [ErrorMessages].. 60

18.7 Referrer Check Section.. 60

19. Update prefixes .. 60

19.1 $WBNULL$ - delete value .. 61

19.2 $WB-$ - subtract from value .. 62

19.3 $WB*$ - multiply value by ... 62

19.4 $WB/$ - divide value with ... 63

19.5 WBA - append text to value .. 64

19.6 WBP - add to value ... 65

19.7 WBR - remove text from value .. 66

20. Report tags .. 67

20.1 $WBAdmin .. 67

20.2 $WBCurrDir - current directory ... 68

20.3 $WBCurrDirA - current directory absolute path 69

20.4 $WBDocRoot - root directory of virtual host ... 69

20.5 $WBFileReport ... 70

20.6 $WBFULID - upload form ID... 70

20.7 $WBTimer - system timer .. 71

20.8 Database related tags ... 72

20.8.1 $WBCQuery - URL encoded query expression 72

20.8.2 $WBDeleted - number of deleted records ... 73

20.8.3 $WBQuery - query expression .. 73

20.8.4 $WBRecordBreak - force next record ... 74

20.9 Error message tags .. 76

20.9.1 $WBErrDesc - full error description .. 76

20.9.2 $WBErrMail - email address shown in error report 77

20.9.3 $WBErrMsg - error description (text only) .. 78

20.9.4 $WBErrNum - error number ... 79

20.10 Navigation tags .. 80

20.10.1 $WBFirstPage - navigation link to first report page 80

20.10.2 $WBLastPage - navigation link to last report page............................ 81

20.10.3 $WBNavigator - full set of report navigation links 82

20.10.4 $WBNextPage - navigation link to next report page 83

20.10.5 $WBPageNums - links to separate report pages 84

20.10.6 $WBPrevPage - navigation link to previous report page 85

20.11 Session tags .. 86

20.11.1 $WBACTSES - active sessions ... 86

21. Functions ... 86

21.1 Difference between report and input functions .. 87

21.2 $WBAADD - add element to array ... 88

21.3 $WBACHG - change value of array element .. 89

21.4 $WBALEN - array length .. 90

21.5 $WBALIDX - last array index .. 90

21.6 $WBASRC - search array elements for specified value 91

21.7 $WBAPRN - concatenate elements of array .. 92

21.8 $WBB64DEC - Base64 decode .. 93

21.9 $WBB64ENC - Base64 encode .. 94

21.10 $WBBAND - binary AND .. 94

21.11 $WBBOR - binary OR .. 95

21.12 $WBBXOR - binary XOR ... 96

21.13 $WBCACHE - cache content ... 96

21.14 $WBCALC - calculate math expression ... 97

21.15 $WBCAPTCHA - show text as captcha .. 99

21.16 $WBCASE - select case (switch) .. 100

21.17 $WBCID - mail content ID .. 101

21.18 $WBDCALC - calculate date... 102

21.19 $WBDIR - list directory ... 103

21.20 $WBDV - decrement value .. 104

21.21 $WBE - environment variable .. 105

21.22 $WBERR - simulates an error .. 106

21.23 $WBESC - URL encode string .. 107

21.24 $WBFN .. 107

21.24.1 ASC - character's ASCII code ... 108

21.24.2 BIN - convert decimal number to binary .. 109

21.24.3 CHR - print character with specified ASCII code 110

21.24.4 DATE - current system date ... 110

21.24.5 DAY - current day of the month.. 111

21.24.6 FDT - date and time in specified format ... 111

21.24.7 HEX - convert decimal number to hexadecimal 112

21.24.8 HTPASS - password used for authentication 112

21.24.9 HTUSER - user name used for authentication 112

21.24.10 INT - integer portion of number .. 113

21.24.11 LCS - to lowercase.. 113

21.24.12 MONTH - current month .. 114

21.24.13 OCT - convert decimal number to octal .. 114

21.24.14 RND - random number .. 115

21.24.15 SECONDS - seconds elapsed since midnight 115

21.24.16 SQR - square root .. 116

21.24.17 TIME - current system time ... 116

21.24.18 UCS - to uppercase ... 116

21.24.19 UNI - convert UTF-8 text to Unicode ... 117

21.24.20 USER - current database user name .. 118

21.24.21 USERDATA - retrieve value of WB_UserData 118

21.24.22 UTF - covert text to UTF-8 ... 118

21.24.23 WEEKDAYN - day of the week (numeric value) 119

21.24.24 WEEKDAYS - day of the week (string value) 119

21.24.25 YEAR - current year .. 120

21.25 $WBFOR - unconditional (for...next) loop .. 120

21.26 $WBFOREACH - loop through array elements....................................... 121

21.27 $WBFSIZE - file size .. 122

21.28 $WBFTIME - file time ... 122

21.29 $WBFUP - bytes uploaded ... 123

21.30 $WBFUT - bytes total ... 124

21.31 $WBGETATOM - get Atom feed .. 124

21.32 $WBGC - get cookie ... 126

21.33 $WBGETRSS - get RSS feed .. 127

21.34 $WBGETURL - get data from URL (GET method) 128

21.35 $WBGETV - get value of WB variable or array element 130

21.36 $WBGETXML - get XML ... 131

21.37 $WBIF - conditionally execute statements ... 133

21.38 $WBINC - include file ... 134

21.39 $WBIRUN - execute inline script .. 135

21.40 $WBIV - increment value .. 136

21.41 $WBJSON - get value of JSON object .. 137

21.42 $WBJSONELEM - get element names of JSON object 139

21.43 $WBJSONLEN - length of JSON object .. 140

21.44 $WBPOSTURL - get data from URL (POST method) 141

21.45 $WBRENDER - process WhizBase code .. 144

21.46 $WBRINC - include file ... 144

21.47 $WBRNDSTR - randomly generated string ... 145

21.48 $WBROUND - rounds number value to specified number of decimal places
 ... 146

21.49 $WBRRV - read and render configuration variable 147

21.50 $WBRUN - execute external script.. 148

21.51 $WBRV - read configuration variable .. 149

21.52 $WBSETV - set value of WB variable .. 151

21.53 $WBSPLIT - convert string to array .. 152

21.54 $WBSUB - execute sub-routine .. 153

21.55 $WBUNESC - decode URL-encoded string .. 154

21.56 $WBUNTIL - loop until a condition becomes True 155

21.57 $WBURL - generate navigation url ... 156

21.58 $WBVDHR - virtual directory home reference....................................... 157

21.59 $WBWHILE - loop while a condition is True .. 157

21.60 $WBXCHNAMES - XML node child node names 158

21.61 $WBXMLHTTP - get data from URL ... 159

21.62 $WBXPATH – Xpath ... 162

21.63 DB related functions .. 163

21.63.1 $WBDetail - show values of all fields ... 163

21.63.2 $WBF - show field value .. 165

21.63.3 $WBFC - show URL-encoded field value ... 167

21.63.4 $WBFF - show formated field value ... 168

21.63.5 $WBFU - show field value as UTF-8 ... 170

21.63.6 $WBP - recordset properties .. 171

21.63.7 $WBRF - show field value with processing WhizBase code 173

21.63.8 $WBSR - sub report ... 174

21.63.9 $WBSRQ - sub report with SQL where clause 174

21.64 INI file functions .. 174

21.64.1 $WBGS - get INI section ... 175

21.64.2 $WBGV - get INI variable .. 176

21.65 Request related functions ... 177

21.65.1 $WBV - request variable ... 177

21.65.2 $WBVA - separated list of request variables 178

21.65.3 $WBVC - URL-encoded request variable .. 179

21.65.4 $WBVR - unprocessed request variable ... 180

21.65.5 $WBVS - multi-value variable separated as QUERY_STRING 182

21.65.6 $WBVSC - multi-value variable separated as QUERY_STRING and URL-
encoded ... 183

21.66 Session related functions .. 184

21.66.1 $WBGETS - get value of session variable 184

21.66.2 $WBSETS - set value of session variable 184

21.67 String manipulation functions .. 185

21.67.1 $WBCNL - clear new line ... 185

21.67.2 $WBCSTR - count string appearances ... 186

21.67.3 $WBFORMAT - format text .. 187

21.67.4 $WBHE - HTML entity ... 188

21.67.5 $WBINDOF - index of ... 189

21.67.6 $WBLEFT - left substring ... 190

21.67.7 $WBLEN - string length ... 190

21.67.8 $WBLINDOF - last index of .. 191

21.67.9 $WBMID - substring at the specified location 192

21.67.10 $WBMREPL - multi replace string .. 193

21.67.11 $WBREPL - replace string .. 194

21.67.12 $WBRIGHT - right substring ... 195

21.67.13 $WBRXE - execute a regular expression 195

21.67.14 $WBRXR - regular expression replace .. 197

21.67.15 $WBTRIM - removes both leading and trailing spaces 197

21.68 Encryption functions .. 198

21.68.1 $WBDECRYPT - decrypt encrypted string 198

21.68.2 $WBENCRYPT - encrypt a string ... 199

21.68.3 $WBHASH - calculate hash/digest ... 200

21.68.4 $WBSXOR - simple XOR encryption/decryption 201

22. Variables .. 202

22.1 FormFields variables - Subsection [FormFields]...................................... 203

22.1.1 WB_AllowMultipart - accept uploaded files 204

22.1.2 WB_AppendMode - append report to existing file 204

22.1.3 WB_Command - the action to be performed by WhizBase 205

22.1.3.1 Add - A ...205

22.1.3.2 Add DB user or group - AU ..206

22.1.3.3 Add DB user to group - AG ..206

22.1.3.4 Change DB user password - CP ..206

22.1.3.5 Compact database - CD ..206

22.1.3.6 Delete - D ...206

22.1.3.7 Delete DB user from group - DG ..206

22.1.3.8 Delete DB user or group - DU ..207

22.1.3.9 Delete file - DF ..207

22.1.3.10 Mail to list of recipients - L ..207

22.1.3.11 Multi update - MU ...207

22.1.3.12 Personalized email - P ...208

22.1.3.13 Query - Q ..209

22.1.3.14 Read DB permissions - RP ...209

22.1.3.15 Render - R (default) ...209

22.1.3.16 Send file - SF ...209

22.1.3.17 Send SMS - SMS ..209

22.1.3.18 Set DB permissions - SP ..210

22.1.3.19 Test - T ...210

22.1.3.20 Update - U ...210

22.1.3.21 Write to file - WF ..210

22.1.4 WB_Config .. 211

22.1.5 WB_Defaults - set the default values for request variables 211

22.1.6 WB_Destination - set the file name for saving the output................... 211

22.1.7 WB_Forced - force values for request variables 212

22.1.8 WB_FULID - generate unique form upload ID 212

22.1.9 WB_HideLogin - scramble login data in navigation URL 212

22.1.10 WB_Required - list of required request variables 213

22.1.11 WB_ShowLogo - display powered by WhizBase logo 213

22.1.12 WB_SysVarByForm - allow system variables (wb_) set as request
variables (by form) .. 214

22.1.13 WB_TempName - report template file name 214

22.1.14 WB_TimeOut - set script time-out interval 215

22.1.15 WB_UseEscapes - use escape sequences for special WB characters ... 215

22.1.16 WB_UserData - user defined content .. 216

22.1.17 WB_ValDelimiter - delimiter for wb_defaults and wb_forced 216

22.1.18 Access control ... 217

22.1.18.1 HTAccess File - configuration file for authentication217

22.1.18.1.1 WB_AuthType - authentication method217

22.1.18.1.2 WB_LoginPage - file name of login page for cookie

authentication ..218

22.1.18.1.3 WB_Realm - realm for basic and digest authentication219

22.1.18.1.4 WB_Scramble - scramble (hide) password(s) stored in

htaccess file ..219

22.1.18.2 WB_HTAccess - location of configuration file for authentication

 ..219

22.1.18.3 WB_HTPass - authentication password220

22.1.18.4 WB_HTUsr - authentication user name220

22.1.18.5 WB_IPListFile - location of file containing list of (dis)allowed IP

address ranges ...221

22.1.19 Database .. 222

22.1.19.1 WB_AddJoker - position of automatically added wildcards......222

22.1.19.2 WB_AndOr - condition concatenation type223

22.1.19.3 WB_BaseName - name of the database used223

22.1.19.4 WB_CDate - set conversion of date/time and boolean fields ...224

22.1.19.5 WB_ChangeHFOn - report header/footer grouping field(s)224

22.1.19.6 WB_Connect - ISAM driver or ODBC DSN225

22.1.19.7 WB_DBFlds - field(s) included in recordset226

22.1.19.8 WB_DBLock - record locking type226

22.1.19.9 WB_DBObject - object used to access the database227

22.1.19.10 WB_ExactCount - count all records in recordset227

22.1.19.11 WB_Exclusive - open the database in exclusive mode228

22.1.19.12 WB_Execute - execute SQL statement(s)228

22.1.19.13 WB_Group - SQL clause "GROUP BY"229

22.1.19.14 WB_Having - SQL clause "HAVING"229

22.1.19.15 WB_InsBr - replace new line characters with
229

22.1.19.16 WB_LCID - locale identifier ID ..230

22.1.19.17 WB_MatchCase - case sensitive search230

22.1.19.18 WB_MaxPages - maximum number of page links in report

navigation ..231

22.1.19.19 WB_MaxRec - maximum number of records per page231

22.1.19.20 WB_MQ - make query (yes/no) ..231

22.1.19.21 WB_Null - update string for clearing field value232

22.1.19.22 WB_Order - SQL clause "ORDER BY"232

22.1.19.23 WB_Pass - database password ...233

22.1.19.24 WB_Predicate - SQL predicate ..233

22.1.19.25 WB_Query - SQL clause "WHERE"233

22.1.19.26 WB_RcdSet - SQL clause "FROM"234

22.1.19.27 WB_ReadOnly - open the database in read-only mode234

22.1.19.28 WB_SetADOCompatible - ANSI wildcard compatibility235

22.1.19.29 WB_ShowEmpty - display empty database fields as space ...235

22.1.19.30 WB_StartRec - internal page counter235

22.1.19.31 WB_System - system database (MDA/MDW) file name236

22.1.19.32 WB_UID - unique record identifier field(s)..........................236

22.1.19.33 WB_Unicode - send field value as unicode237

22.1.19.34 WB_UniFTS - field(s) to be included in Universal Query Search

 ..237

22.1.19.35 WB_UniQS - string to be searched for in Universal Query

Search ...237

22.1.19.36 WB_WC - database wildcard character for LIKE comparison .238

22.1.19.37 WB_WholeWord - whole word search238

22.1.19.38 WB_Usr - database user name ...239

22.1.19.39 WBF_field - sending field values as request variables239

22.1.20 DB administering (DAO only) ... 241

22.1.20.1 WB_DBAddData - permission for adding records to the database

 ..241

22.1.20.2 WB_DBAdmin - permission for administering the database242

22.1.20.3 WB_DBDelData - permission for deletinging records from the

database ..242

22.1.20.4 WB_DBEditData - permission for updating records in the

database ..243

22.1.20.5 WB_DBGroup - name of the database users' group243

22.1.20.6 WB_DBModDes - permission for modifying the database

structure ..244

22.1.20.7 WB_DBNewPass - new database password244

22.1.20.8 WB_DBNPassCh - control value of the new password244

22.1.20.9 WB_DBOldPass - old database password245

22.1.20.10 WB_DBReadData - permission for reading records from the

database ..245

22.1.20.11 WB_DBReadDes - permission for reading records the database

design (structure) ...246

22.1.20.12 WB_DBUser - database user name for administering246

22.1.20.13 WB_PID - personal identification.......................................247

22.1.21 Error reporting... 247

22.1.21.1 WB_ErrFile - template for error reports247

22.1.21.2 WB_ErrMail - email address at the end of error message248

22.1.22 File related (WF and DF commands) ... 248

22.1.22.1 WB_FileName - file name for DF and WF commands248

22.1.22.2 WB_KeyName - variable name(s) for WF command249

22.1.22.3 WB_KeyValue - variable value(s) for WF command249

22.1.22.4 WB_Section - file section for WF command249

22.1.22.5 WB_Separator - character used to separate different keys and

different values for WF command ..250

22.1.23 HTTP .. 251

22.1.23.1 WB_AddCookie - name and value of the cookie to be

added/modified...251

22.1.23.2 WB_ContentType - value for HTTP Content-Type: clause251

22.1.23.3 WB_HTTPHeader - additional clauses for HTTP header252

22.1.23.4 WB_Redirect - the URL for 301 and 302 redirect (HTTP header

Location: clause) ..252

22.1.24 Logging .. 253

22.1.24.1 WB_Debug - file name for storing the debug information253

22.1.24.2 WB_Log - file name for storing the log data254

22.1.24.3 WB_LogData - data to be stored in log254

22.1.24.4 WB_LogTemp - template for log record254

22.1.25 Mail related ... 255

22.1.25.1 WB_Attach - mail attachment ..255

22.1.25.2 WB_AttachField - name of field containing attachment file

name(s) ...256

22.1.25.3 WB_BCC - email BCC address(es)256

22.1.25.4 WB_BCCField - database field name containing email BCC

address(es) ..256

22.1.25.5 WB_CC - email CC address(es) ..257

22.1.25.6 WB_Embed - the name(s) of the file(s) to be embedded in the

email ...257

22.1.25.7 WB_From - email from address ..258

22.1.25.8 WB_MailAuth - mail server authentication type258

22.1.25.9 WB_MailPass - mail server authentication password258

22.1.25.10 WB_MailPort - mail server SMTP port259

22.1.25.11 WB_MailServer - mail server name or IP address259

22.1.25.12 WB_MailSSL - mail server authentication type259

22.1.25.13 WB_MailUser - mail server authentication user name260

22.1.25.14 WB_PlainText - plain text email messsage part260

22.1.25.15 WB_Subject - email subject ...261

22.1.25.16 WB_To - email TO address(es) ...261

22.1.25.17 WB_ToField - database field name containing email TO

address(es) ..261

22.1.26 Sessions ... 262

22.1.26.1 WB_ClearSessions - clear incative (expired) sessions262

22.1.26.2 WB_LogOffSession - clear current session262

22.1.26.3 WB_UseSessions - use server sessions263

22.1.27 SMS ... 263

22.1.27.1 WB_SMSBR - SMS baud rate..263

22.1.27.2 WB_SMSC - SMS center number ..264

22.1.27.3 WB_SMSCharacter - SMS character type264

22.1.27.4 WB_SMSDB - SMS data bits ...265

22.1.27.5 WB_SMSField - database field name containing phone number of

text message recipient...265

22.1.27.6 WB_SMSIgnoreErrors - ignore SMS error messages265

22.1.27.7 WB_SMSNumber - SMS recipient phone number266

22.1.27.8 WB_SMSParity - SMS parity type ..266

22.1.27.9 WB_SMSPIN - SMS Personal Identity Number (PIN)266

22.1.27.10 WB_SMSPort - SMS modem COM port267

22.1.27.11 WB_SMSSB - SMS stop bits size267

22.1.27.12 WB_SMSSD - SMS send delay ..268

22.1.27.13 WB_SMSSR - SMS send retry ...268

22.1.27.14 WB_SMSTO - SMS timeout ..268

22.2 MsgAndLbl variables - Subsection [MsgAndLbl] 269

22.2.1 WB_AddToURL - additional request variables for navigation URLs
formated as QUERY_STRING ... 270

22.2.2 WB_DigitDir - directory containing image files for graphic navigation links

 ... 270

22.2.3 WB_Style - navigation links CSS style ... 271

22.2.4 WBL_FirstPage - link text for First page link 271

22.2.5 WBL_LastPage - link text for Last page link 272

22.2.6 WBL_NextPage - link text for Next page link 272

22.2.7 WB_PassVars - comma delimited list of additional request variables for
navigation URLs .. 272

22.2.8 WBL_PrevPage - link text for Previous page link 273

22.2.9 WBM_Deleted - message template for reporting deleted records 273

22.2.10 WBM_NoMatch - text for reporting that search returned no records ... 274

22.3 Upload section variables - Subsection [Upload] 274

22.3.1 WB_BaseUrl - URL prefix to be added to uploaded file name 275

22.3.2 WB_Disallow - list of file types (extensions) that can not be uploaded . 275

22.3.3 WB_MaxFSize - maximum size for a single uploaded file 276

22.3.4 WB_Overwrite - overwrite existing file with uploaded one 276

22.3.5 WB_UploadDir - destination directory for uploaded files 277

22.3.6 WB_UploadLog - file name for logging upload activities 277

23. Error messages ... 278

23.1 Common system errors .. 278

23.1.1 Error 5 - Invalid procedure call or argument 278

23.1.2 Error 13 - Type mismatch ... 278

23.1.3 Error 75 - Path/File access error .. 278

23.1.4 Error 429 - ActiveX component can't create object............................ 278

23.2 Database errors .. 278

23.2.1 Error 3027 - Driver: Text; produced following error: Can't update.

Database or object is read-only. .. 278

23.2.2 Error 3051 - The Microsoft Jet database engine cannot open the file '<file
name>'. It is already opened exclusively by another user, or you need
permission to view its data. ... 279

23.2.3 Error 3061 - Too few parameters. Expected <number> 279

23.2.4 Error 3146 - ODBC--call failed. .. 279

23.2.5 Error 3170 - Couldn't find installable ISAM. 279

23.2.6 Error 3265 - Item not found in this collection. 279

23.2.7 Error 3633 - Driver: MS Access; produced following error: Can't load DLL:
'MSJET35.DLL' ... 280

23.3 WhizBase specific errors ... 280

23.3.1 Error 5010 - Duplicate value in UID! ... 280

23.3.2 Error 5011 - Empty mailing list recordset! 280

23.3.3 Error 5012 - Error reading system file <file name>! 280

23.3.4 Error 5013 - Illegal referring page! ... 280

23.3.5 Error 5014 - Illegal unique identifier! Query returned more than one
record! ... 280

23.3.6 Error 5015 - Illegal unique identifier! Query returned no records! 281

23.3.7 Error 5016 - Illegal use of unregistered trial version of WhizBase engine!

 ... 281

23.3.8 Error 5017 - Incorrect password! ... 281

23.3.9 Error 5018 - Invalid command string! ... 281

23.3.10 Error 5019 - Invalid data passed to UrlDecode() function. 281

23.3.11 Error 5020 - Invalid data passed to UrlEncode() function. 281

23.3.12 Error 5021 - Invalid value for True/False field! 281

23.3.13 Error 5022 - New password check failed! 282

23.3.14 Error 5023 - No data received! Nothing to add to database! 282

23.3.15 Error 5024 - Query string empty! Unable to identify record! 282

23.3.16 Error 5025 - Record(s) can't be added; no insert permission on
<recordset>! .. 282

23.3.17 Error 5026 - Record(s) can't be deleted; no delete permission on
<recordset>! .. 282

23.3.18 Error 5027 - Record(s) can't be edited; no update permission on

<recordset>! .. 282

23.3.19 Error 5028 - Record(s) can't be read; no read permission on
<recordset>! .. 282

23.3.20 Error 5029 - Required form field 'WB_BaseName' missing! 283

23.3.21 Error 5030 - Required form field 'WB_Pass' missing! 283

23.3.22 Error 5031 - Required form field 'WB_RcdSet' missing! 283

23.3.23 Error 5032 - Required form field 'WB_UID' missing! Unable to identify

record! ... 283

23.3.24 Error 5033 - Required form field 'WB_Usr' missing! 283

23.3.25 Error 5034 - Required form field(s) missing! 283

23.3.26 Error 5035 - Required WB_UID member field <field name> missing!
Unable to identify record! ... 283

23.3.27 Error 5036 - Syntax error in $WBFN: <function>! 284

23.3.28 Error 5037 - Test mode disabled! ... 284

23.3.29 Error 5038 - Unable to execute mail operation! WB_MailServer missing!
 ... 284

23.3.30 Error 5039 - Unable to select mail list mode. Received values for both
WB_ToField and WB_BCCField. Please remove one! 284

23.3.31 Error 5040 - User not found!.. 284

23.3.32 Error 5041 - Unable to send mail to mailing list. Both WB_ToField and
WB_BCCField are empty! .. 284

23.3.33 Error 5042 - Report template file <TemplateName> not found! 284

23.3.34 Error 5043 - Required field WB_Config missing! 284

23.3.35 Error 5044 - Configuration file <ConfigName> not found! 284

23.3.36 Error 5045 - Absolute path not allowed! File name: <FileName> 284

23.3.37 Error 5046 - Error in script file <ScriptFile> 285

23.3.38 Error 5047 - Multipart content not allowed! 285

23.3.39 Error 5048 - Server <ServerName> does not support file upload! 285

23.3.40 Error 5049 - File too large! .. 285

23.3.41 Error 5050 - Ilegal file type! .. 285

23.3.42 Error 5051 - Ilegal scripting language! .. 285

23.3.43 Error 5052 - Ilegal script method! .. 285

23.3.44 Error 5053 - Server <server name> does not support WBSP! 285

23.3.45 Error 5054 - WB_Order does not start with WB_ChangeHFOn 285

23.3.46 Error 5055 - This WBSP project is not registered for use with

<HostName> virtual host! .. 285

23.3.47 Error 5056 - $WBMREPL arguments do not match!.......................... 286

23.3.48 Error 5057 - Required form field WB_FileName missing! 286

23.3.49 Error 5058 - Required form field WB_KeyName missing! 286

23.3.50 Error 5059 - Required form field WB_Section missing! 286

23.3.51 Error 5060 - Unable to delete file <filename>! File not found 286

23.3.52 Error 5061 - Error writing file <filename> 286

23.3.53 Error 5062 - Server does not support writing files! 286

23.3.54 Error 5063 - Server does not support deleting files! 286

23.3.55 Error 5064 - Wrong IP range string:<IPAddrRange> 286

23.3.56 Error 5065 - IP authentication failed! .. 287

23.3.57 Error 5066 - WB_UID for multi update must not contain field list! Unable

to identify records! .. 287

23.3.58 Error 5067 - Different size of WBF form field arrays! Field <field name>.
 ... 287

23.3.59 Error 5068 - Invalid IP address <IP Address>! Dotted decimal values
must be between 0 and 255 .. 287

23.3.60 Error 5069 - WB_KeyName and WB_KeyValue arrays do not match!.. 287

23.3.61 Error 5070 - Invalid value for the WB_DBObject! 287

23.3.62 Error 5071 - Invalid value for the ADO connection string or

WB_DBObject! .. 287

23.3.63 Error 5072 - Security string missing.. 287

23.3.64 Error 5073 - Invalid extension ... 287

23.3.65 Error 5074 - Invalid numeric argument for $WBErr function! Use
numbers from 6000 to 65535! ... 288

23.3.66 Error 5075 - Syntax error .. 288

23.3.67 Error 5076 - WB_Redirect required! .. 288

23.3.68 Error 5077 - Too many instances for server <server name>! 288

23.3.69 Error 5078 - $WBCASE function syntax error 288

23.3.70 Error 5079 - Script time out error ... 288

23.3.71 Error 5080 - Invalid time out interval .. 288

23.3.72 Error 5081 - Invalid assign method! Use WBAAdd[] function. 288

23.3.73 Error 5082 - Invalid path! ... 288

23.3.74 Error 5083 - Empty SMS list recordset! ... 288

23.3.75 Error 5084 - Required form field 'WB_SMSPort' missing! 289

23.3.76 Error 5085 - Invalid character passed to WBCAPTCHA function! 289

23.3.77 Error 5086 - Duplicate Sub Definition! Sub name: nameofsubroutine! 289

23.3.78 Error 5087 - Undefined subroutine nameofsubroutine! 289

23.3.79 Error 5088 - Invalid hash algorithm! ... 289

23.3.80 Error 5089 - Invalid algorithm! .. 289

23.3.81 Error 5090 - Unrecognized encrypted format! Check the input type! .. 289

23.3.82 Error 5091 - Error processing JSON .. 289

23.3.83 Error 5092 - Missing parameter function name in $WBIRUN function! 290

24. Appendixes ... 290

24.1 Named Formats (format string definitions) .. 290

24.2 User-Defined Formats (format string definitions) 291

24.3 Format expression rules ... 294

24.4 HTML form and input elements .. 294

24.4.1 HTML from .. 294

24.4.2 Input elements .. 295

24.5 SQL patterns .. 298

1. Introduction

WBSP, (WhizBase Server Pages) is a general-purpose scripting tool (hypertext

preprocessor) for Web development and can be embedded into HTML, XHTML, XML,
RTF, ASCII, JavaScript, VBScript and any other text based file format.

Its syntax is different from any programming language like C, Java, Perl, VB, and
also form other hypertext preprocessors like PHP or ASP. It is easy to learn, and has

very short learning curve before one can produce useful results.

Since its first release in 1998 it has been used for building few hundreds sites
including eye catching web presentations, web applications, real-time monitoring

systems, etc.

The general ideas that drove us during the development of WhizBase
included:

 enable non-programmers to make dynamic content
 avoid changing the development routine of our clients

 enrich existing HTML, do not require building everything from the scratch
 make it easy for network and system administrators to build efficient intranet

solutions

 make maintenance fast, simple and easy
 use self-explaining syntax easy visible in WYSIWYG editors
 make our software flexible for specific needs

 make secure environments both for developers and hosting providers

2. What is WhizBase

WhizBase is the friendly middleman between your database where you keep your

data and the web where you need it to be!

Sounds nice, but does it work?

Here's an example code:

<html>

 <body>

 Hello!

 Your IP address is $wbe[REMOTE_ADDR].

 Today is $wbfn[weekdays], $wbfn[fdt(dd-mmm-yyyy)].

 </body>

</html>

In WYSIWYG HTML editor it looks like this:

Hello! Your IP address is $wbe[REMOTE_ADDR].

Today is $wbfn[weekdays], $wbfn[fdt(dd-mmm-yyyy)].

And this is what output of this script may be:

Hello! Your IP address is 192.168.0.203.

Today is Monday, 14-Apr-2008.

Even from this short example, you can see how it is different from a script written in
programming languages like Perl, JavaScript or C or from a code written using other

hypertext preprocessors like PHP or ASP. There are no start and end tags, but very
simple placeholders that will be replaced with proper content during page processing,

without changing any other part of the page, including text-formatting applied to
placeholder.

Since all WBSP code is processed on the server, the visitors receive only the results
of the script and have no idea what code was used to generate the page. If you

configure WBSP on your server to process files with extension HTM, there is no way
your visitors can know what's powering your site.

The great thing about the WBSP is that it can be used to produce really impressive
results with only few WBSP instructions included in HTML, and still it can also be
used to build a really complex web-based applications. We strongly believe that

anyone can produce useful results in less than 30 minutes.

3. What's new in version 7

New features in WhizBase 7 include:

- Digest authentication
- Hash calculation using MD5, SHA1, SHA256, SHA384, SHA512
- Encryption/decryption using AES, AES192, AES256, Blowfish, CAST, DES, RC2,

 RC4, RC5, TripleDES, UNIXcrypt
- Simple XOR encryption/decryption
- Retrieving RSS feeds

- Retrieving Atom feeds
- Reading and parsing XML files
- Reading and parsing JSON files

- Escape sequences for WhizBase reserved characters
- For and ForEach loops
- Increment and decrement functions

4. Technical information

Application type: HTML preprocessor - RWADE

Operating systems: Windows® 95/98/NT/2000/Me/XP/2003/Vista/2008/Windows7

Minimum system requirements: Pentium 100 MHz, 64 MB RAM, 30 MB HDD space,

Windows®-based web server that supports standard CGI applications and filtering

Supported databases: All database types supported by Microsoft® Jet Engine 3.5
and 4.0 using DAO and ADO objects (including Microsoft® Access versions 2.0 to
2003 (MDB files) and Microsoft® Access versions 2007-2010 (ACCDB files), dBASE™

versions III, IV and 5.0, Paradox™ versions 3.x, 4.x and 5.x, FoxPro® versions 2.0,
2.5, 2.6 and 3.0, ASCII files in tabular format) and all databases that support ODBC
connections

Engine file size:~ 1 MB

Supported reports: RTF, XML, HTML, DHTML, TXT, RSS, JavaScript, CSS, VB Script,

WML, Adobe® FLASH® external data file, XHTML, XAML, WAP and more.

Executable: wbsp.exe -WBSP engine file.

Engine file: original file name WBSP.exe should not be changed.

Windows® and Microsoft® are registered trademarks of Microsoft® Corporation.
Adobe® and FLASH® are registered trademarks of Adobe® Corporation.

5. Virtual directories

WhizBase includes support for virtual directories since version 6.1. There are some
important notes regarding virtual directories in WB:

- virtual directory must have the same name as physical directory

Physical path: Virtual path:

c:\inetpub\vhosts\admin /admin/

- physical path must be added to AllowedPaths
Physical path:

c:\inetpub\vhosts\admin

AllowedPaths=c:\inetpub\vhosts\admin

- all WhizBase files (wbsp, sr, inc and ic) contained in virtual directory must use

function $WBVDHR to refer to wwwroot directory of the site
Inside wwwroot directory:

WB_BaseName=/database/biblio.mdb

Inside virtual directory:

WB_BaseName=$wbvdhr{}/database/biblio.mdb

- to be able to use $WBVDHR function, server side variable VirtualDirHomeRef must

be set in wbsp.ssc file.

6. CGI mode

Unlike previous versions that were either CGI program or hypertext pre-processor,
WhizBase 5 and newer can be used both ways.
To use WhizBase in CGI mode you still need valid WBSP file, but instead of calling

WBSP file directly (e.g. http://someserver/somefile.wbsp) you should insert in your
URL engine file followed by full wbsp file path relative to the web server's root
directory (e.g. http://someserver/cgi-bin/wbsp.exe/somefile.wbsp).

Due to security reasons we have disabled direct execution of

theenginefile
(e.g.http://someserver/cgi-
bin/wbsp.exe?wb_basename=somebase.mdb&wb_rcdset=sometable&wb_command
=q will not work).

7. Test mode

Test mode is feature added in version 2000. Its main purpose is to check if your
WWW server has all files needed by WBSP properly installed.

To start WhizBase Server Pages test mode first create wbsp file named test.wbsp
with following data:

[FormFields]

wb_command=T

wb_mailserver=your mailserver (e.g. mail.yourdomain.com)

wb_errmail=your email address (e.g. webmaster@yourdomain.com)

and upload it to your server (either local or Internet). Then open it using your
browser by typing it's URL into browser's address bar (e.g.
http://www.yourdomain.com/test.wbsp)

During the test WhizBase will create few databases and tables (and delete them
afterwards) to test drivers. It will also execute a simple JavaScript code (server-side

script) to test scripting host and send a simple test mail to email address specified in
wb_errmail using mail server specified in wb_mailserver. It will also show WBSP.ssc
settings for virtual host.

WARNING: To test the server installation and settings, WBSP creates following

database tables: WhizBaseTest.mdb, WBDBIII.dbf, WBDBIV.dbf, WBDB5.dbf,
WBPDX3.db, WBPDX4.db, WBPDX5.db, WBFOX20.dbf, WBFOX25.dbf, WBFOX26.dbf,
WBFOX30.dbf, WBTEXT, schema.ini and WBODBC. If the files with these names

exist, by any chance, in a directory where test.wbsp is located, they will be deleted.

You DO NOT need registration key to run this test on your WWW server!

8. Escape characters

Due to WhizBase's unique nature and parsing methods it is highly recommended not

to use characters that are specific for WhizBase syntax in ordinary text not related to

WhizBase (e.g. using square brackets [] inside WhizBase report function can cause

syntax error). Therefore we included escape sequences that can be used instead of
those characters. To make WHizBase interpret these sequences and replace them
with proper content, variable WB_UseEscapes must be set to True.

Character Escape sequence

$ &$;

| &|;

{ &{;

} &};

[&[;

] &];

9. Comments

WhizBase version 6 adds support for comments. To avoid mistakes and removing

parts of programming code written in other programming techniques and/or
languages WhizBase uses hash and asterisk characters for opening and asterisk and
hash characters for closing of the comments:

e.g.

#* This text will not be processed by WhizBase,
nor it will be sent to the browser.
*#

Multiline comments are supported in the body of the reports and subreports (below

<!--WB_BeginTemplate-->), and in included files ($WBINC and $WBRINC).
If you want to comment the variables in the configuration section(s) use the
single hash (without asterisk) at the beginning of the row containing the variable:

e.g.

#WB_TempName=$default$
the line above will be completely ignored by WhizBase

or use #* and *# in the single row:

e.g.
WB_Query=ID>1 #* and Year < 2001 *# and ID<100

the line above will be processed to:
WB_Query=ID>1 and ID<100

Beside documenting purposes comments can help you in debugging your WhizBase
code - simply comment the part you suspect that generates the error and test the

page again.

10. Subroutines

WhizBase version 6 added support for subroutines. Subroutines are code snippets
written inside <!--WB_BeginSub_subname--> and <!--WB_EndSub--> where
subname is the name that will be used for calling the subroutine using $WBSUB

function and it must be unique in the scope of the main wbsp file and all sub reports
and include files called from main wbsp file.

e.g.

<!--WB_BeginSub_diskarea-->

$wbformat[$wbcalc[$wbgetv[r]^2*3.1415926535897932384626433832795]|#.000

]

<!--WB_EndSub-->

Multiline Subroutines are supported in the body of the reports and sub reports
(below <!--WB_BeginTemplate-->) and anywhere in included files ($WBINC and
$WBRINC).
Please do not place subroutines in the configuration section(s) because it will

have no effects.

11. Exceptions

WhizBase function $WBINC can not accept other WhizBase functions as arguments,

but there is a similar function - $WBRINC that can be used when you need to process
the function's arguments.

12. Path rules

WBSP engine has it's own path rules:

 All relative paths are relative to the location of the current WBSP file.
 Root dir is represented by slash (/) character and it represents document root

(wwwroot) directory of current virtual host, and not root directory of current

disk.
 In order to access files on same disk but located above the document root

directory as well as to access files located on other disks or computers,

developer must use absolute paths.
To enable usage of absolute paths, AbsolutePath variable must be set to true
in server configuration section for current virtual host in wbsp.ssc file. If this

variable is not set to true, an error will be generated when WBSP receives a
reference to an absolute path.

Path rules apply to all WhizBase variables, sections and functions that use external
files. Here are some examples:

[Include]

/shopping.inc

../dbsettings/admin.inc

[FormFields]

wb_basename=\\DatabaseSrv\user23\access\shopping.mdb

wb_logFile=c:\logs\user23\wbsp.log

<!--BeginTemplate-->

<html><body><p>

$wbinc[/globaltop.htm]

<!--WB_BeginDetail-->

Your registration code is:

$wbrun[c:\scripts\user23\registration.js

|JavaScript|MkRegCode($wbv{CopyID})]

<!--WB_EndDetail-->

$wbinc[shoppingfooter.htm]

</body></html>

Lines shown in red color contain file names with absolute path.

13. Installation

This install guide will help you manually install and configure WhizBase on your

Windows 9x/Me/NT/2000/XP/2003 web servers.

This guide provides manual installation support for:
Internet Information Server 4,5,6
Windows 2008 and IIS 7

Apache
Xitami

OmniHTTPd 2.0b1 and up
Netscape Servers
Abyss Web Server

WhizBase can be used either as a scripting engine or as a CGI program.

Before applying the server specific instructions, WhizBase files should be
installed using the executable installer. Please read file installwhizbase.pdf.

13.1 Installing WhizBase on Windows with Abyss Web Server

This section contains notes and hints specific to Abyss Web Server. To download
Abyss Web Server installation package please visit

http://www.aprelium.com/abyssws/download.php.

 Open Abyss Web Server's console
 In the Hosts table, press Configure in the row corresponding to the host to

which you want to add WBSP support

 Click Scripting Parameters icon

 Check Enable Scripts Execution

 In the Interpreters table click Add button

 and set the parameters as shown bellow

 In the Interpreter field, press Browse..., go to the directory where you have

installed WBSP, locate wbsp.exe, and click on it
(in the example above we assume that you have installed WBSP in c:\wbsp\)

 Set Type to Standard

 Check Use the associated extensions to automatically update the Script Paths
 Press Add in the Associated Extensions table
 Enter wbsp in the Extension field and press OK

 Press OK
 Press OK in the Scripting Parameters dialog
 Click Index Files icon

 Press Add in the Index Files table
 Enter default.wbsp in the File Name field and press OK
 Click OK

 Press Restart to restart the server.

13.2 Installing WhizBase on Windows with Apache

This section contains notes and hints specific to Apache Web Server. To download

Apache Web Server installation package please visit
http://httpd.apache.org/download.cgi .

To set up WhizBase to work with Apache on Windows you need to stop the Apache
server, and edit your srm.conf or httpd.conf to configure Apache to work with WBSP.

Although there can be a few variations of configuring WBSP under Apache, these are
simple enough to be used by the newcomer. Please consult the Apache Docs for
further configuration directives.

To install WBSP insert these lines to your conf file (assuming that you have installed

WBSP in c:\wbsp\):
<Directory "c:/wbsp/">

 AllowOverride all

 Options None

 Order allow,deny

 Allow from all

</Directory>

ScriptAlias /wbsp/ "c:/wbsp/"

AddType application/x-httpd-wbsp .wbsp

Action application/x-httpd-wbsp "/wbsp/wbsp.exe"

You must repeat from last two lines for each extension you want associated with
WBSP scripts. (.wbsp,.sr,.aut,.ic and .inc are recommended.)

Please note that we have done our best to disable calling WBSP directly:

http://servername/wbsp/wbsp.exe?.....
so please do not change the .exe extension on wbsp.exe file.

As a further precaution, we recommend you change the "/wbsp/" ScriptAlias to
something more random, to prevent any attempts to call your binary (like the Code

Red scripts) for returning a response other than 404.

Remember when you have finished to restart the server, for example,
NET STOP APACHE
followed by

NET START APACHE

13.3 Windows NT/2000/2003 and IIS 4, 5, 6 or newer and PWS 4 on NT
Workstation or W2K non server editions

To install WhizBase on an NT/2000/2003 Server running IIS 4, 5, 6 follow these

instructions. Start the Microsoft Management Console (may appear as 'Internet
Services Manager', either in your Windows NT 4.0 Option Pack branch or the
Control Panel=>Administrative Tools under Windows 2000). Then right click on your

Web server node (this will most probably appear as 'Default Web Server'), and select
'Properties'.

Next, do the following:

 Under 'Home Directory', 'Virtual Directory', or 'Directory', click on the

'Configuration' button, and then enter the App Mappings tab.
 Click Add, and in the Executable box , type:

c:\wbsp\wbsp.exe (assuming that you have installed WBSP in c:\wbsp\).

 In the Extension box , type the file name extension you want associated with
WBSP scripts.
Leave 'Method exclusions' blank, and check the Script engine checkbox. You

do not need to check the 'check that file exists' box - because of
a performance effects, WBSP itself will check that the script file exists and
sort out authentication before processing the request.

This means that you will get sensible 404 style error messages anyway but
checking the 'check that file exists' box will slow the server a bit.

 You must repeat from 'Click Add...' for each extension you want associated
with WBSP scripts. (.wbsp,.sr,.aut,.ic and .inc are recommended.)

 For Windows 2003 Server and IIS 6 only: Set web extension status to

"Allowed" by opening "Web Service Extensions" and selecting "Add a new Web
service extension...". Name the service (e.g. "WBSP Extension"), add full path
to wbsp.exe to the "Required files" list, and check the "Set extension status to

Allowed " checkbox. This step has to be done on W2003/IIS 6 even if you
want to use WBSP as a CGI.

13.4 IIS 7

Please read file installingiis.pdf.

13.5 Installing WhizBase on Windows with Netscape servers.

To Install WhizBase:

 Make a file association from the command line (type the 2 following lines,
assuming that you have installed WBSP in c:\wbsp\)
assoc .wbsp=WBScript

ftype WBScript=c:\wbsp\wbsp.exe %1 %*
 In the Netscape Enterprise Administration Server create a dummy shellcgi

directory and remove it just after (this step creates 5 important lines in

obj.conf and allow the web server to handle shellcgi scripts)
 In the Netscape Enterprise Administration Server create a new mime

type (Category:type,Content-Type:magnus-internal/shellcgi,File Suffix:wbsp)

Do it for each web server instance you want WBSP to run

13.6 Installing WhizBase on Windows with OmniHTTPd Server

This section contains notes and hints specific to OmniHTTPd 2.0b1 and up for
Windows.

 Install OmniHTTPd server.

 Right click on the blue OmniHTTPd icon in the system tray and select

'Properties'
 Click on 'Web Server Global Settings'
 On the 'External ' tab, enter:

virtual = .wbsp | actual = c:\wbsp\wbsp.exe (assuming that you have
installed WBSP in c:\wbsp\)
and use the Add button.

 On the Mime tab , enter:
virtual = wwwserver/stdcgi | actual = .wbsp
and use the Add button.

 Click 'OK'

Repeat steps 4,5 and 6 for each extension you want to associate with WBSP
(.wbsp,.sr,.aut,.ic and .inc are recommended).

13.7 Installing WhizBase on Windows with Xitami

This section contains notes and hints specific to Xitami - powerful multiplatform Open
Source web server. To download Xitami installation package please visit
http://www.xitami.com/download.htm.

 Make sure the webserver is running, and point your browser to xitamis admin

console (usually http://127.0.0.1/admin), and click on Configuration.
 Navigate to the Filters, and put the extension which wbsp should parse (i.e.

.wbsp) into the field File extensions (.xxx).

 In Filter command or script put the path and name of your wbsp executable
i.e. c:\wbsp\wbsp.exe (assuming that you have installed WBSP in c:\wbsp\).

 Press the 'Save' icon.

 Repeat last three steps for each extension you want associated with WBSP
scripts (.wbsp,.sr,.aut,.ic and .inc are recommended).

To add WBSP filter manually please follow these steps:

 In directory where Xitami is installed create file defaults.cfg
 Add following lines to the file:

[Server]
priority=1

[Server]
Default3=default.wbsp
[Filter]

#assuming that WBSP.exe is located in c:\wbsp\
.wbsp=c:\WBSP\wbsp.exe
.sr=c:\WBSP\wbsp.exe

.aut=c:\WBSP\wbsp.exe

.ic=c:\WBSP\wbsp.exe

.inc=c:\WBSP\wbsp.exe

 Restart the server

14. WBSP Server Side Configuration (wbsp.ssc)

WBSP server side configuration file is text file located in the same directory with
engine file wbsp.exe. Both these files should not be accessible using HTTP protocol
(they should be located above wwwroot directory of the web server or, if WSBP is

used as CGI, in a directory without read access).
WBSP.SSC file has three main sections and a separate configuration section for
every virtual host on the server:

 Registration

 Servers (virtual hosts)
 Default

14.1 Default section

Default section contains configuration that will be applied to any virtual host that

does not have its own configuration section . Here's an example:

[default]

DisableWB=F

AbsolutePath=Off

Upload=Off

FileCommands=Off

Execute=JavaScript

HiddenEnvVars=PATH,COMP*,System*,Win*

TimeOutSec=10

DefaultDocument=index.wbsp

ADOConnectionString=F

ActivateCGIByExt=wbsp

CGISecurityString=LhBv3KP

MaxInstances=30

HideDocuments=sr,ic,inc,aut,mdb,dbf

The next example will disable usage of WBSP on all virtual hosts, but those that are
defined in Servers section:

[default]

DisableWB=T

14.2 Registration section

The registration section always contains a single value of registration key for entire

server (server license - ServerKey variable). If valid server registration key exists,
virtual hosts do not need their own registration keys.

[Registration]
ServerKey=SXHZSNKIKDIJSHIJKL

14.3 Server configuration section

This section contains specific server side configuration for all aliases of a single

virtual host defined in Servers section. It has to be created for every virtual host that
needs separate configuration different from default settings. Here's an example:

[wbsp.com]

DisableWB=F

AbsolutePath=On

Upload=On

FileCommands=On

Execute=JavaScript,VBScript,JScript

HiddenEnvVars=PATH,COMP*,System*

TimeOutSec=20

DefaultDocument=index.wbsp

ADOConnectionString=T

ActivateCGIByExt=wbsp

CGISecurityString=LhBv3KP

MaxInstances=0

HideDocuments=sr,aut,inc,ic,mdb

ScriptTimeOutSec=60

[dsd.ba]

DisableWB=F

AbsolutePath=Off

Upload=On

FileCommands=Off

Execute=VBScript

HiddenEnvVars=PATH,COMP*,System*,Win*

TimeOutSec=10

DefaultDocument=default.wbsp

ADOConnectionString=F

ActivateCGIByExt=wbsp

CGISecurityString=LhBv3KP

MaxInstances=10

14.4 Servers (virtual hosts) section

This section contains definition of aliases used to access single virtual host. Format of
the definition is

virtualhostname=alias1,alias2,alias3,...,aliasN

If some virtual hosts do not have any aliases then they will be listed only by

virtualhostname. The purpose of this section is to make WBSP engine use the same
configuration section for a single virtual host regardless of an alias used to access
it. Aliases are needed only if virtual host has more than one domain pointing to the

same web, but they can be used also for single domain sites.
[Servers]

whizbase.com=wbsp.com

myfirstclient.com=myfirstclient.net,myfirstclient.org,myfirstclient.ca

dsd.ba=www.dsd.ba,members.dsd.ba

dws.ba

The value marked with blue in example above is not required (because all aliases
point to the same domain - dsd.ba), but it will not produce error of any kind.
The red colored values in example are used to define the server side configuration
section for specific virtual host. As you can see, if virtual host has only one domain

used to access it, then simply add that domain to the list, without specifying any
aliases (as it is the case with domain dws.ba in example above).

14.5 Server configuration variables

The purpose of server side configuration is to provide more control of the hosted

sites to the server owner. All these variables are used to increase security of the
server, by limiting developers access rights to certain server data (environmental
variables, paths above virtual hosts wwwroot directory, writing files during run-

time), or by limiting the ability to use some WBSP functionalities (scripting host, file
upload, full definition of ADO connection string, limiting number of instances of the

WBSP engine that can be used simultaneously by single virtual host or even disabling
WBSP on certain virtual hosts) or by strictly defining the rules by which WBSP can be
used in CGI mode.

Server-side configuration variables :

AbsolutePath
ActivateCGIByExt
ADOConnectionString

CGISecurityString
DefaultDocument
Developer

DisableWB
Execute
FileCommands

HideDocuments
HiddenEnvVars
MaxInstances

RegCode
ScriptTimeOutSec
SessionFile

SessionIdleTime
TimeOutSec
Upload

14.5.1 AbsolutePath

AbsolutePath=On/Off

If this variable is set to True, the WBSP engine will allow owner of the site (author,
user that creates WBSP files and uploads them to server) to use absolute path

names, i.e. to access files outside his wwwroot directory, files located on other disks
or even other network computers.
Setting this value to True can have great advantages on intranet (or if you use entire

server exclusively) but it is not wise to set this to True on shared web server
with many users. Default value is False.

14.5.2 ActivateCGIByExt

ActivateCGIByExt=fileextension

This variable has no effect on the WhizBase it is installed as a scripting engine. It
defines the file extension required for activating the WhizBase in the CGI mode. The

default value is wbsp (the WhizBase can be activated in the CGI mode only by a
file with .wbsp extension), and if, for any reason, there is a need for disabling this
security measure set this variable to $empty$.

14.5.3 ADOConnectionString

ADOConnectionString=On/Off

If this variable is set to True then WBSP will accept any valid ADO connection string
in WB_DBObject . If it is set to False then WB_DBObject will accept only predefined
values D35, D36, A35, A40 and A07. Default value is off.

14.5.4 AllowedPaths

AllowedPaths=path list

This variable contains a comma-separated list of absolute paths that are allowed for
use by the site. It is similar to setting AbsolutePath to true, but limited only to

specified paths. Path list can contain paths outside site's wwwroot directory, paths
located on other disks or even other network computers.
It is very useful on shared servers where web site needs an access to files outside

wwwroot directory but you can not set AbsolutePath to true due to security reasons.

14.5.5 CacheDir

CacheDir= path to cache directory

This variable contains a reference to the directory where WhizBase stores files
generated by function $WBCACHE.

Example:

CacheDir=/cache/

14.5.6 CGISecurityString

CGISecurityString=anystring

This variable has no effect on the WhizBase when it is installed as a scripting engine.
It contains the administrator-defined case-sensitive string that must match the
beginning of the file used to activate the WhizBase in the CGI mode. It is used when

for some reason it is not suitable to use ActivateCGIByExt. There is no default
value for this variable.

Example:

CGISecurityString=LnTW34FxD

Valid WBSP file:

LnTW34FxD

[FormFields]

wb_command=...

Invalid WBSP file:

[FormFields]

wb_command=...

14.5.7 DefaultDocument

DefaultDocument=filename

This variable contains the file name of default WBSP file defined in your server's
configuration (e.g. index.html, index.htm, index.wbsp). Some web server software
can have problems recognizing the default document. If that is the case with your

web server software than setting this variable will solve the problem. Default value
is default.wbsp.

14.5.8 Developer

Developer=registered developer name

This variable contains the name of the registered developer used in combination with
RegCode variable. If valid combination of these two variables exists, virtual hosts do
not need their own registration keys.

14.5.9 DisableWB

DisableWB=T/F

If this variable is set to True, the WBSP engine will not process WBSP files located on
that specific virtual host, and error will be generated. Default value is False.

14.5.10 Execute

Execute=languagelist

This variable contains the comma-separated list of scripting languages that are

allowed to be used on the virtual server. If this variable is empty then server-side
scripting functionality of WBSP engine (using $wbrun function) will be disabled on
that virtual host. There is no default value for this variable, so if administrator

does not set the list, scripting will be disabled.

14.5.11 FileCommands

FileCommands=On/Off

If this variable is set to True, the WBSP will process files that include writing and/or

deleting files on server. It is strongly recommended not to set this variable to True

together with AbsolutePath set to true, unless webmaster of virtual server is

experienced WBSP developer. Default value is Off.

14.5.12 HiddenEnvVars

HiddenEnvVars=envlist

This variable contains the comma-separated list of environment variables that will be

hidden, i.e. author will not be able to use $wbe function with those variables.
Default value is *, what means that all environment variables will be hidden.
However, some of the environment variables are very important for developing

advanced WBSP-powered sites, so it is good idea to hide only those environment
variables that can be abused (e.g. PATH, COMP*, SYSTEM*, etc.)

14.5.13 HideDocuments

HideDocuments=extlist

This variable contains the comma-separated list of file extensions that will be hidden,

i.e. if you configure server to handle files with those extensions by WBSP, WBSP will
return HTTP error 404 (file not found). Default value is sr,aut,ic,inc, what means
that include files (both inc and ic), subreports and authorization files will be hidden,

as long as your server is configured to handle them with WBSP.exe same as files
with wbsp extension.

14.5.14 MaxInstances

MaxInstances=number

This variable defines the maximum number of concurrent instances of the engine for
the specific virtual server. If this number is exceeded the error will be generated.
The default value is 0 (unlimited number of instances).

14.5.15 RegCode

RegCode=Registration Key

This variable contains the registration code used in combination with Developer
variable. If valid combination of these two variables exists, virtual hosts do not need
their own registration keys.

14.5.16 ScriptTimeOutSec

ScriptTimeOutSec=seconds

This variable contains the default value for WB_TimeOut variable for specific virtual
host. Default value is 30.

14.5.17 SessionFile

SessionFile=/DVKOTWF/sessionfile.ssc

This variable contains the full path to the file where WhizBase will save all session-
related data. Default value is /sessions.ssc.

14.5.18 SessionIdleTime

SessionIdleTime=3600

This variable contains the number of seconds of continuous idle time that must pass
before WhizBase clears the session due to inactivity. Default value is 1800.

14.5.19 TimeOutSec

TimeOutSec=seconds

This variable contains the number of seconds that WBSP engine will wait for server-
side script ($wbrun) to execute before it terminates the execution. Default value is
10.

14.5.20 Upload

Upload=On/Off

If this variable is set to True, the WBSP engine will process WBSP files that upload
files to server. To learn more about this, please read the explanation for usage of
WB_AllowMultipart variable in section FormFields and explanation for Upload section

of WBSP file. WBSP enables author to control the type, size and location of uploaded
files. However, server administrator can disable file-uploading by setting this variable
off, even when author of the site has created proper WBSP files. Default value is

Off.

14.5.21 UseServerKey

UseServerKey=On/Off

If this variable is set to False, the WBSP engine will require separate registration key

for WhizBase instance used by the site even if computer has valid WhizBase server
license. Useful in situations where owner of the server wants to limit usage of
existing WhizBase server license (e.g. to web hosting clients that pay additional fee

to the server's owner for being able to use WhizBase). Default value is True.

14.5.22 VirtualDirHomeRef

VirtualDirHomeRef=path to wwwroot directory

This variable contains a reference to wwwroot (home) directory of the site, the value
that will be returned by function $WBVDHR. It is used to provide reference to site's

wwwroot directory for files located in virtual directory.

15. Getting started

Although WBSP on your server can be configured to process files with any extension,
to make usage of this tutorial easier we will assume that .wbsp extension is used.
For development purposes you will probably install WBSP locally, and this manual

has installation instructions for many existing web servers including some very good
freeware. If you have any problems with installing WBSP, please do not hesitate to
contact us .

15.1 Your first WBSP page

Create file hello.wbsp and place it in document root of your web server with following

content:

<html>

 <body>

 Hello visitor from $wbe[remote_addr]!

 Your language is $wbe[HTTP_ACCEPT_LANGUAGE].

 </body>

</html>

Access the file with your web server's URL followed by /hello.wbsp. On your local
web server (located on same computer as your browser) the address should be
http://localhost/hello.wbsp or http://127.0.0.1/hello.wbsp. If WBSP is installed
correctly and the server is configured correctly, your browser should receive

something like this:

<html>

 <body>

 Hello visitor from 127.0.0.1!

 Your language is en-us.

 </body>

</html>

and it would be displayed like this:

Hello visitor from 127.0.0.1!

Your language is en-us.

If this example did not output anything when you tried it or if it started the download
or displayed the file unchanged (with $wb elements included), then the server
probably is not configured properly.

15.2 Something useful

This is a simple solution for common task - determining the visitor's preferred
language and redirecting him to proper content:

[FormFields]

WB_Command=R

WB_Redirect=http://$wbe{server_name}/$wbif{$wbindof{$wbe{HTTP_ACCEPT_LA

NGUAGE}|de}>0|ger|eng}

If visitor's browser is configured to accept content in German language the WBSP will
redirect visitor to directory ger (with content in German language) in servers root,
and if it does not then visitor will be redirected to directory eng (with content in
English language).

15.3 Simple database example

What makes WBSP really different from programming languages and other hypertext

preprocessors is it's way of dealing with databases. WBSP can work with wide range
of databases that are supported by MS Jet Engine, DAO and ADO objects and ODBC.
In our examples we use MS Access database biblio.mdb that can be downloaded

from our server.

Download file bibliomdb.zip from our server and unpack it in your document root of
your web server and create file biblio.wbsp in same directory with following content:

[FormFields]

WB_Command=q

WB_Basename=biblio.mdb

WB_Rcdset=titles

WB_TempName=$default$

Access the file with your web server's URL followed by /biblio.wbsp. On your local
web server (located on same computer as your browser) the address should be
http://localhost/biblio.wbsp or http://127.0.0.1/biblio.wbsp. If WBSP is installed
correctly and the server is configured correctly, your browser should receive

something like this:

Title
Year
Published

ISBN PubID AU_ID

McGraw-Hill's Encyclopedia of Networking &

Telecommunications
2001 0072120053 10 10

Microsoft SMS Installer 2000 0072124474 10 9

Windows 2000 Iis 5.0 : A Beginner's Guide 2001 0072133724 9 9

Windows Nt Security Handbook 1996 0078822408 10 11

Microsoft Internet Information Server 4: the
Complete Reference

1998 0078824575 10 10

Non-Designer's Scan and Print Book, The 1999 0201353946 1 2

Real World Adobe InDesign 1.5 2000 0201354780 1 1

HTML 4 for the World Wide Web: Visual

Quickstart Guide
2000 0201354934 1 6

Real World Freehand 7 1997 0201688875 1 1

Netscape 3 for Macintosh Visual Quickstart

Guide
1996 0201694085 1 6

Kai's Power Tools 3 for Windows Visual
Quickstart Guide

1997 0201696681 1 2

InDesign 1.0/1.5 for Macintosh and Windows:
Visual QuickStart Guide

2000 0201710366 1 2

Fireworks 4 for Windows and Macintosh Visual 2001 0201731339 1 2

Quickstart Guide

Macromedia FreeHand 10 for Windows and

Macintosh: Visual QuickStart Guide
2001 0201749653 1 2

Real World FreeHand 5.0/5.5 1996 0201883600 4 1

Sams Teach Yourself Macromedia

Dreamweaver 3 in 24 Hours
2000 0672318830 12 13

Sams Teach Yourself Macromedia
Dreamweaver 4 in 24 Hours

2000 0672320428 12 13

Photoshop 6 Photo-Retouching Secrets 2001 0735711461 3 3

www.color 2000 0823058573 8 7

Www.Layout : Effective Design and Layout for

the World Wide Web
2001 0823058581 8 8

1 2
First page Next page Last page

As you can see WBSP has created a default template for displaying all fields from
table Titles in biblio.mdb. Since we did not define maximum number of records per

page (WB_MaxRec) it used the default value of 20 records, and generated links to
pages containing further records. It also displayed the WBSP logo at the bottom of
the page.

Well, it is nice and easy solution but is not very useful, isn't it?

To make really useful example we will need an ordinary HTML page like this:

<html>

 <head>

 <title>Simple database example</title>

 </head>

 <body>

 </body>

</html>

The second step would be to add some WBSP lines (marked red):

[FormFields]

WB_Command=q

WB_Basename=biblio.mdb

WB_Rcdset=titles

wb_showlogo=F

<!--WB_BeginTemplate-->

<html>

 <head>

 <title>Simple database example</title>

 </head>

 <body>

 $wbdetail[t]

 </body>

</html>

If you open this page with your browser by typing it's address on your local server,
you will see very little changes compared to first example - WBSP logo is not
included in a page because we set WB_ShowLogo to false.

Now the third and final step for this example - setting the style for generated table
(marked with blue):

[FormFields]

WB_Command=q

WB_Basename=biblio.mdb

WB_Rcdset=titles

wb_showlogo=F

[MsgAndLbl]

WB_Style=font-family:verdana;font-size:12px;color:#CC0000;

<!--WB_BeginTemplate-->

<html>

 <head>

 <style>

 .wbspttbl{

 border:1px solid #000000;

 font-family:verdana;

 font-size:12px;

 border-collapse:collapse;

 border-spacing:0px;

 }

 .wbspthdr{

 background-color:#CC0000;

 border:1px solid #000000;

 color:#C0C0C0;

 }

 .wbsptrow{

 background-color:#FFCC00;

 border:1px solid #000000;

 color:#0000CC;

 }

 </style>

 <title>Simple database example</title>

 </head>

 <body>

 $wbdetail[t]

 </body>

</html>

The result in the browser now should look something like this:

Title
Year
Published

ISBN PubID AU_ID

McGraw-Hill's Encyclopedia of Networking &
Telecommunications

2001 0072120053 10 10

Microsoft SMS Installer 2000 0072124474 10 9

Windows 2000 Iis 5.0 : A Beginner's Guide 2001 0072133724 9 9

Windows Nt Security Handbook 1996 0078822408 10 11

Microsoft Internet Information Server 4: the 1998 0078824575 10 10

Complete Reference

Non-Designer's Scan and Print Book, The 1999 0201353946 1 2

Real World Adobe InDesign 1.5 2000 0201354780 1 1

HTML 4 for the World Wide Web: Visual

Quickstart Guide
2000 0201354934 1 6

Real World Freehand 7 1997 0201688875 1 1

Netscape 3 for Macintosh Visual Quickstart
Guide

1996 0201694085 1 6

Kai's Power Tools 3 for Windows Visual
Quickstart Guide

1997 0201696681 1 2

InDesign 1.0/1.5 for Macintosh and Windows:
Visual QuickStart Guide

2000 0201710366 1 2

Fireworks 4 for Windows and Macintosh Visual
Quickstart Guide

2001 0201731339 1 2

Macromedia FreeHand 10 for Windows and

Macintosh: Visual QuickStart Guide
2001 0201749653 1 2

Real World FreeHand 5.0/5.5 1996 0201883600 4 1

Sams Teach Yourself Macromedia
Dreamweaver 3 in 24 Hours

2000 0672318830 12 13

Sams Teach Yourself Macromedia

Dreamweaver 4 in 24 Hours
2000 0672320428 12 13

Photoshop 6 Photo-Retouching Secrets 2001 0735711461 3 3

www.color 2000 0823058573 8 7

Www.Layout : Effective Design and Layout for
the World Wide Web

2001 0823058581 8 8

1 2

First page Next page Last page

As you can see we used css classes wbsptbl, wbspthdr and wbsptrow to format
the table and for formatting navigation links we used WBSP variable WB_Style.

16. How to...

This section contains step-by-step instructions on how to complete basic tasks using
WhizBase.

Displaying records from database table
Uploading files

16.1 The simplest database example

1. Open new file in your favorite text editor
2. Type the following code

[FormFields]

wb_basename=biblio.mdb

wb_rcdset=titles

wb_command=q

wb_tempname=$default$

3. Save page as wbsp file (some_name.wbsp) and upload it to the server

together with biblio.mdb file

16.2 1-2-3 example

1. Open your plain HTML file in your favorite editor and position the cursor where
you want to display your database contents

2. Type the following code

#*

[FormFields]

wb_basename=biblio.mdb

wb_rcdset=titles

wb_command=q

*#

$wbdetail[T]

3. Save page as wbsp file (some_name.wbsp) and upload it to the server
together with biblio.mdb file

16.3 Displaying formatted records from database table

This simple example uses few basic WhizBase variables and functions, but it includes

HTML tag STYLE to define classes wbspttbl, wbspthdr and wbsptrow which are used
to format table containing records from database.

[FormFields]

wb_basename=biblio.mdb

wb_rcdset=Titles

WB_Command=Q

WB_MaxRec=10

<!--WB_BeginTemplate-->

<html>

<head>

<style>

.wbspttbl{

border:1px solid #000000;

font-family:verdana;

font-size:12px;

border-collapse:collapse;

border-spacing:0px;

}

.wbspthdr{

background-color:#CC0000;

border:1px solid #000000;

color:#C0C0C0;

}

.wbsptrow{

background-color:#FFCC00;

border:1px solid #000000;

color:#0000CC;

}

</style>

<title>Simple database example</title>

</head>

<body>

$wbdetail[t]

</body>

</html>

16.4 Displaying records from joined tables

Table "Titles" does not contain neither author's nor publisher's name but their
respective ID numbers. In this example we joined table "Titles" with tables "Authors"

and "Publishers" (using WhizBase variable WB_RcdSet) and used WB_DBFlds to
define fields we want to include in resulting recordset. We also sorted records by
year in descending order.

[FormFields]

wb_basename=biblio.mdb

WB_RcdSet=(Authors inner join titles on authors.au_id=titles.au_id)

inner join publishers on publishers.pubid=titles.pubid

WB_DBFlds=Title,[Year Published],ISBN,Authors.Name as

Author,publishers.Name as Publisher

WB_Command=Q

WB_MaxRec=10

WB_Order=[Year published] desc

<!--WB_BeginTemplate-->

<html>

<head>

<style>

.wbspttbl{

border:1px solid #000000;

font-family:verdana;

font-size:12px;

border-collapse:collapse;

border-spacing:0px;

}

.wbspthdr{

background-color:#CC0000;

border:1px solid #000000;

color:#C0C0C0;

}

.wbsptrow{

background-color:#FFCC00;

border:1px solid #000000;

color:#0000CC;

}

</style>

<title>Simple database example</title>

</head>

<body>

$wbdetail[t]

</body>

</html>

16.5 Creating search form

To enable search though the recordset we will add the search form and use joined

tables so our visitor can search for author's and publisher's name instead of their ID.
Please note that form fields with name starting with WBF_ are used to carry a value
for specific database field. The name of the recordset field is specified after WBF_

prefix and it has to be exactly the same as in the database.

[FormFields]

wb_basename=biblio.mdb

WB_RcdSet=(select Title,[Year Published],ISBN,Authors.Name as

Author,publishers.Name as Publisher,Authors.Name,publishers.Name from

(Authors inner join titles on authors.au_id=titles.au_id) inner join

publishers on publishers.pubid=titles.pubid)

WB_Command=Q

WB_MaxRec=10

WB_Order=[Year published] desc

<!--WB_BeginTemplate-->

<html>

<head>

<style>

.wbspttbl{

border:1px solid #000000;

font-family:verdana;

font-size:12px;

border-collapse:collapse;

border-spacing:0px;

}

.wbspthdr{

background-color:#CC0000;

border:1px solid #000000;

color:#C0C0C0;

}

.wbsptrow{

background-color:#FFCC00;

border:1px solid #000000;

color:#0000CC;

}

input, select, label{

width:150px;

font-family:verdana;

font-size:11px;

}

</style>

<title>Simple database example</title>

</head>

<body>

<form action="$wbe[script_name]"> #*comment: $wbe[script_name] will

return the name of current wbsp file*#

<label for="year">Select year of publishing: </label>

<select name="WBF_Year published" size="1" id="year">#*comment:

WBF_Year published form field will carry the search string for

recordset field Year published*#

<option value="">ignore</option>

<option value="1996">1996</option>

<option value="1997">1997</option>

<option value="1998">1998</option>

<option value="1999">1999</option>

<option value="2000">2000</option>

<option value="2001">2001</option>

</select>

<label for="title">Title: </label>

<input type="text" size="20" id="title" name="wbf_title">
#*comment:

WBF_title form field will carry the search string for recordset field

title*#

<label for="author">Author: </label>

<input type="text" size="20" id="author"

name="wbf_author">
#*comment: WBF_author form field will carry the

search string for recordset field author*#

<label for="publisher">Publisher: </label>

<input type="text" size="20" id="publisher"

name="wbf_publisher">
#*comment: WBF_publisher form field will carry

the search string for recordset field publisher*#

<label for="AO">Return records that: </label>

<select name="WB_AndOr" size="1" id="AO">

<option value="AND">match all conditions</option>

<option value="OR">match any of the conditions</option>

</select>
#*comment: Value of WB_AndOr form field will define if

WhizBase will search for records that meet all conditions (And) or any

condition (Or)*#

<input type="submit" name="sButt" value="Search">

</form>

$wbdetail[t]

</body>

</html>

16.6 Displaying records in XML format

In other examples we used $WBDetail function, but in some cases there is a need for

placing the database field in a specific location on your report, or even not using
HTML at all. In that case we do not use $WBDetail function but some (or all) of

database field functions $WBF, $WBFF, $WBFC, $WBFU and $WBRF. We also use <!-
-WB_BeginDetail--> and <!--WB_EndDetail--> comments to define the detail section
(section that will be repeated for every record). In this example we will modify the

code so it will return recordset in XML format:

[FormFields]

wb_basename=biblio.mdb

WB_RcdSet=(Authors inner join titles on authors.au_id=titles.au_id)

inner join publishers on publishers.pubid=titles.pubid

WB_DBFlds=Title,[Year Published],ISBN,Authors.Name as

Author,publishers.Name as Publisher

WB_Command=Q

WB_MaxRec=all

WB_Order=[Year published] desc

WB_ContentType=text/xml

<!--WB_BeginTemplate--><?xml version="1.0" encoding="UTF-8"?>

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata"

generated="2008-10-02T12:24:19"><!--WB_BeginDetail-->

<Titles>

<Title>$wbmrepl[$wbf[Title]|',&|',&]</Title>

<Year_x0020_Published>$wbf[year published]</Year_x0020_Published>

<ISBN>$wbf[isbn]</ISBN>

<Author>$wbf[Author]</Author>

<Publisher>$wbf[Publisher]</Publisher>

</Titles><!--WB_EndDetail-->

</dataroot>

We modified WB_MaxRec to special value all (this will show all records from
recordset in a single report page) and set the WB_ContentType variable to text/xml.
Note that we also had to use $WBMREPL function to replace apostrophe and
ampersand characters in field "Title" due to syntax rules of XML.

16.7 Simple upload example

The upload process functions like this – visitor sends the file to the server using

multipart form (enctype="multipart/form-data"). WhizBase first checks if file upload
is enabled in current virtual host setting (file wbsp.ssc). If it is not, WBSP will

generate error and terminate processing of the WBSP file. If file upload is enabled, it
checks if the WB_AllowMultipart variable is set to True in the current WBSP file, and
if it is, WhizBase reads settings from Upload section of same file and process

uploaded files (every multipart form can upload more than one file at the time).
When WhizBase receives all files it saves them following the instructions from Upload
section and replace values of the multipart fields (fields that had contained the

uploaded files) with URL of saved file, and then it process the WBSP file as any
other. Multipart form must use POST method.

Here is a very simple upload example (please read the comments in source code
below):

[FormFields]

WB_AllowMultipart=T #*Allow this wbsp file to accept uploaded files*#

WB_Command=R

[Upload]

WB_Disallow=![jpg,gif] #*disallow uploading of any file type but jpg

and gif*#

WB_UploadDir=/upload/ #*destination directory name (where uploaded

files will be saved)*#

WB_BaseURL=/upload/ #*path that will be added to file name to reference

the URL of the uploaded file*#

WB_Overwrite=F #*if set to false WhizBase will generate a unique name

for newly uploaded file if file with same name already exists in upload

directory*#

WB_MaxFSize=102400 #*Maximum size in bytes for single file that will be

accepted by WhizBase*#

WB_UploadLog=upload.log #*name of log file where WhizBase will keep

track of all uploads received by this file*#

<!--WB_BeginTemplate-->

<html>

<head>

<title>$wbif["$wbv[image]"=""|Upload file|File uploaded]</title>

</head>

<body bgcolor="#ffffff" leftmargin="0" topmargin="0" marginwidth="0"

marginheight="0">

$wbif["$wbv[image]"="" #*check if file has been uploaded*#

|

#*If not ($wbv[image] is empty) show the upload form*#

<form action="$wbe[script_name]" method="post" ENCTYPE="multipart/form-

data">

Select file (*.jpg;*.gif - max. 100KB): <input type="file" name="image"

size="20"> <input type="submit" name="sButt" value="Upload">

</form>

|

#*If file is uploaded ($wbv[image] contains URL to file) then display a

link to uploaded file*#

Open uploaded image
$wbv[image]

]

</body>

</html>

16.8 Advanced upload example

This example adds the record to "Titles" table including a reference to uploaded
cover page image. Here is the code for page containing the form:

<!--

[FormFields]

WB_Command=R

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Add Titles</title>

<meta http-equiv="Content-Type" content="text/html; charset=windows-

1252">

<meta http-equiv="Content-Language" content="en-us">

</head>

<body>

<form action="titlesAdd.wbsp" method="POST" align="center" id="addForm"

ENCTYPE="multipart/form-data">

<table border="0" cellpadding="0" cellspacing="0">

<tr>

<td>Title</td>

<td align="right"><input type="text" name="WBF_Title" value

size="20"></td>

</tr>

<tr>

<td>Year Published </td>

<td align="right"><input type="text" name="WBF_Year Published" value

size="20"></td>

</tr>

<tr>

<td>ISBN</td>

<td align="right"><input type="text" name="WBF_ISBN" value

size="20"></td>

</tr>

<tr>

<td>Publisher </td>

<td align="right"><select name="WBF_PubID"

size="1">$wbsr[selpublisher.sr]</select></td>

</tr>

<tr>

<td>Author</td>

<td align="right"><select name="WBF_AU_ID"

size="1">$wbsr[selauthor.sr]</select></td>

</tr>

<tr>

<td>Book cover (image)</td>

<td align="right"><input type="file" name="WBF_imageURL"

size="20"></td>

</tr>

<tr>

<td> </td>

<td align="right"><input type="submit" name="sButt" value="Add new

title"></td>

</tr>

</table>

</form>

</body>

</html>

and titlesAdd.wbsp file should look something like this:
[FormFields]

WB_BaseName=biblioA.mdb

WB_AllowMultipart=T

WB_Command=A

WB_Redirect=$wbe[http_referer]$wbif[$wbindof[$wbe[http_referer]|?]>0||?

wb_startrec=$wbv[sr]]

WB_RcdSet=Titles

[Upload]

WB_Disallow=![jpg,gif]

WB_UploadDir=/images/

WB_BaseURL=/images/

WB_Overwrite=F

WB_MaxFSize=24576

WB_UploadLog=upload.log

In this example, when visitor enters the values in all form fields (including the image
file to be uploaded using WBF_ImageUrl) and submits the form, WBSP will accept the

data and:

1. Check the Upload variable for current virtual host in wbsp.ssc file
2. If uploading is enabled WBSP engine will read the WB_AllowMultipart variable

from WBSP file titlesAdd.wbsp

3. Since it exists and is set to True WBSP engine will process the uploaded file
(e.g. mycover.gif)

4. First WBSP checks if the file size is less then or equal to the number specified

in variable WB_MaxFSize (24576 bytes in this example)
5. If file size is OK, WBSP saves the file in directory specified in variable

WB_UploadDir (directory images in servers document root)

6. If file with same name already exists it will generate unique file name
(because WB_Overwrite is set to False) for uploaded file

7. Next WBSP changes the value of form variable WBF_ImageURL to

WB_BaseURL+name of the saved file (in this example /images/mycover.gif)
8. WBSP writes the log record in log file specified in variable WB_UploadLog (in

this example file upload.log located in same dir with file titlesAdd.wbsp)
9. After this WBSP engine will continue processing the WBSP file to complete the

Add record command (specified by WB_Command=A) as it was ordinary form,

with the exception of the value of table field imageurl which will have value
/images/mycover.gif (relative URL of the uploaded file, and not the file
itself).

17. WhizBase Report Template (WBSP file)

Unlike the previous versions of WhizBase when report template had to be invoked

using EXE CGIprogram(e.g.<a>) with WhizBase Server Pages any file with extension
.wbsp will start WBSP engine which will open the file and start processing it.
WhizBase report templates (.wbsp files) have the same structure as ordinary

documents ot selected type (HTML, XML, XHML, RTF, JS, TXT, etc.) extended with
WhizBase configuration variables and WhizBase report tags and functions
("placeholders" - reserved words starting with $WB).

Depending of its type, WBSP file can be divided in up to six (6) sections –

Configuration section, Top section, Header, Detail and Footer sections and Bottom
section, but it can also be ordinary document with no sections at all. The number of
sections depends upon type of operation that WBSP page is created for.

For example, this is a WBSP file divided in four sections (section dividers are marked
red):
[FormFields]

WB_basename=biblio.mdb

wb_rcdset=publishers

WB_Command=Q

wb_showlogo=F

wb_order=name

<!--WB_BeginTemplate-->

<html>

<head>

<title>Publishers</title>

</head>

<body>

<!--WB_BeginDetail-->

<span style="font-family:Verdana;font-size:14px;font-

weight:bold;color:#0066cc;">$wbf[Name]

$wbsr[titles.sr]

<!--WB_EndDetail-->

</body>

</html>

and this one has no sections at all:
<html>

<head>

<title>Publishers</title>

</head>

<body>

Hello!

Today is $wbfn[Weekdays], $wbfn[fdt(dd.mmm.yyyy)]!

</body>

</html>

Here is a brief explanation for all 6 sections:

<!--Start of Configuration section-->

<!-- comment tag to prevent WYSIWYG editors from destroying the file

structure

[FormFields]

#this subsection contains most of the WB variables needed by WBSP to

run properly

[MsgAndLbl]

#this subsection contains custom messages and labels

[Upload]

#this subsection contains variables needed for processing multipart

form data

[ErrorMessages]

#this subsection contains custom error messages

[Include]

#this subsection contains paths to include files with WB variables

[Referrer Check]

#this subsection defines valid referrers for current page

[UserData]

#this subsection defines custom, user-defined variables

-->

<!--WB_BeginTemplate-->

<!--End of Configuration section-->

<!--Start of Top section-->

 <html>

 <body>

<!--End of Top section-->

 <!--Start of Detail section-->

 <!--WB_BeginDetail-->

 <!--Start of Header section-->

 <!--WB_BeginHeader-->

 <!--this is where WB report tags and functions for header

section should be placed-->

 <!--WB_EndHeader-->

 <!--End of Header section-->

 <!--this is where WB report tags and functions for detail section

should be placed-->

 <!--Start of Footer section-->

 <!--WB_BeginFooter-->

 <!--this is where WB report tags and functions for footer

section should be placed-->

 <!--WB_EndFooter-->

 <!--End of Footer section-->

 <!--WB_EndDetail-->

 <!--End of Detail section-->

<!--Start of Bottom section-->

 </body>

 </html>

<!--End of Bottom section-->

17.1 Configuration section

This section should be placed on top of the WBSP file and separated from rest of the
file with <!--WB_BeginTemplate--> comment. This way WBSP engine will not

send anything from this section to the client (e.g. visitor's browser), and all variables
and file paths will stay hidden from visitor. Configuration section contains definitions
for WBSP variables needed for a specific task. It can have one to seven subsections,

depending on purpose of the WBSP page – Include, FormFields,
Upload, MsgAndLbl, Referrer check, ErrorMessages and UserData . To learn more
about these sections please read the explanations for each section in chapter

"Configuration section subsections".

Here's an example (configuration section is marked blue)

<!--

[FormFields]

WB_basename=biblio.mdb

wb_rcdset=titles

wb_command=Q

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

<table border="1" cellspacing="0">

<tr>

<td>Year published</td>

<td>Title</td>

<td>ISBN</td>

</tr>

<!--WB_BeginDetail-->

<tr>

<td>$wbf[Year published]</td>

<td>$wbf[title]</td>

<td>$wbf[ISBN]</td>

</tr>

<!--WB_EndDetail-->

</table>

<center>$wbnavigator</center>

</body>

</html>

17.2 Top section

Everything from top of the Wbsp file (or from <!--WB_BeginTemplate--> comment,
if it exists) to <!--WB_BeginDetail--> comment is considered to be a Top section. It
will be processed by WBSP engine and sent to client, before WBSP processes the

Detail section . It can contain DB related functions , but it will ignore WB_StartRec
variable (i.e. for all $wbf functions it will return the value of the first record, and not
the record at the position defined in WB_StartRec).

Here's an example (top section is marked blue)
<!--

[FormFields]

WB_basename=biblio.mdb

wb_rcdset=titles

wb_command=Q

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

<table border="1" cellspacing="0">

<tr>

<td>Year published</td>

<td>Title</td>

<td>ISBN</td>

</tr>

<!--WB_BeginDetail-->

<tr>

<td>$wbf[Year published]</td>

<td>$wbf[title]</td>

<td>$wbf[ISBN]</td>

</tr>

<!--WB_EndDetail-->

</table>

<center>$wbnavigator</center>

</body>

</html>

17.3 Detail section

Detail section is everything located between <!--WB_BeginDetail--> and <!--
WB_EndDetail--> comments. When WBSP start processing the detail section, it
moves the recrdset to the record defined in WB_StartRec variable, processes all tags

and functions found in detail section, sends the resulting content to the client, moves
the recordset to the next record and repeat the process for every record in record
range (starting with record number WB_StartRec and ending with record number

WB_StartRec + WB_MaxRec). It means that detail section will be repeated as many
times as there is records in the range. It is very important to place <!--
WB_BeginDetail--> and <!--WB_EndDetail--> comments properly, because

misplacing them can produce unwanted results.

Here's an example:

<!--

[FormFields]

WB_basename=biblio.mdb

wb_rcdset=titles

wb_command=Q

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

<table border="1" cellspacing="0">

<tr>

<td>Year published</td>

<td>Title</td>

<td>ISBN</td>

</tr>

<!--WB_BeginDetail-->

<tr>

<td>$wbf[Year published]</td>

<td>$wbf[title]</td>

<td>$wbf[ISBN]</td>

</tr>

<!--WB_EndDetail-->

</table>

<center>$wbnavigator</center>

</body>

</html>

When processed this WBSP page will produce a table with 3 columns and 20 rows
containing filed values for Year published, Title and ISBN fields from table Titles.

However, if we misplace the <!--WB_BeginDetail--> and <!--WB_EndDetail-->
comments by putting hem inside the <tr> </tr> structure, like this:
<!--

[FormFields]

WB_basename=biblio.mdb

wb_rcdset=titles

wb_command=Q

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

<table border="1" cellspacing="0">

<tr>

<td>Year published</td>

<td>Title</td>

<td>ISBN</td>

</tr>

<tr>

<!--WB_BeginDetail-->

<td>$wbf[Year published]</td>

<td>$wbf[title]</td>

<td>$wbf[ISBN]</td>

<!--WB_EndDetail-->

</tr>

</table>

<center>$wbnavigator</center>

</body>

</html>

we'll get a two rows table with 3 columns in first row and 60 columns in second
row (3 columns for every record displayed).

17.4 Header and Footer sections

Header and footer are subsections of detail section. When used they must be placed
on the very beginning (header) and very end (footer) of the detail section. This

means that nothing (HTML code, RTF tags, plain text, etc.) can not be placed
between <!--WB_BeginDetail--> and <!--WB_BeginHeader--> and/or between <!--
WB_EndFooter--> and <!--WB_EndDetail-->. This is an example of correctly placed

header and footer (marked blue):

<!--

[FormFields]

wb_command=q

wb_basename=biblio.mdb

wb_rcdset=titles

wb_changeHFon=[Year published]

wb_order=[Year published]

wb_maxrec=all

-->

<!--WB_BeginTemplate-->

<html>

<body>

$wbsetv[countbooks|0]

<!--WB_BeginDetail-->

<!--WB_BeginHeader-->

This is the list of titles for year $wbf[year

published]

<!--WB_EndHeader-->

$wbf[title] - $wbf[isbn]

$wbsetv[countbooks|$wbcalc[$wbgetv[countbooks]+1]]

<!--WB_BeginFooter-->

<hr>

Total books in $wbf[year published]:

$wbgetv[countbooks]<hr>

$wbsetv[countbooks|0]

<!--WB_EndFooter-->

<!--WB_EndDetail-->

</body>

</html>

Header and Footer sections will be processed and sent to the client before and after

Detail section whenever any of referent fields change it's value (to learn more about
referent fields please read the explanation for input variable WB_ChangeHFOn).
Header and Footer sections will also be shown at the beginning of the Detail section

for first record and at the end of the Detail section for last record on the report.

17.5 Bottom section

Everything from <!--WB_EndDetail--> comment to the end of the report template is
Bottom section. It will be processed by WBSP engine and sent to client, after WBSP

processes the Detail section . If it can contains DB related functions , they will not
produce error, but they also will not return proper value (eg. for all $wbf functions it
will return empty string). To display proper result of these functions in bottom

section, place the result in a variable using $wbsetv function, and retrieve them in
bottom section using $wbgetv function.

Here's an example (bottom section is marked blue)
<!--

[FormFields]

WB_basename=biblio.mdb

wb_rcdset=titles

wb_command=Q

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

<table border="1" cellspacing="0">

<tr>

<td>Year published</td>

<td>Title</td>

<td>ISBN</td>

</tr>

<!--WB_BeginDetail-->

<tr>

<td>$wbf[Year published]</td>

<td>$wbf[title]</td>

<td>$wbf[ISBN]</td>

</tr>

<!--WB_EndDetail-->

</table>

<center>$wbnavigator</center>

</body>

</html>

17.6 WhizBase SubReports

Due to its simplicity and unique way of working with databases, single WBSP file can
work with single recordset regardless of recordsets complexity. However, in most
real-life situations there is the need for using more than one recordset for a single

task (in a single wbsp file). For that purpose WhizBase uses subreports - a report
that is inserted in another report. When you combine two or more reports, one of
them must serve as the main report (main WBSP file).

To include subreport in main WBSP file use either $WBSR or $WBSRQ functions.
Although subreport file looks very similar to ordinary WBSP file, there are few
differences:

 Subreport can only execute Q command (i.e. it is not possible to add, delete

or modify data using subreport)
 It reads only a subset of WBSP variables - mostly those related to database

recordset:

FormFields section
WB_BaseName, WB_ShowEmpty, WB_LCID , WB_DBObject, WB_WC,
WB_InsBR, WB_StartRec, WB_MaxRec, WB_RcdSet, WB_TempName,

WB_Query, WB_SetADOCompatible, WB_ChangeHFOn, WB_Order,
WB_Exclusive, WB_ReadOnly, WB_Connect, WB_Last, WB_Usr, WB_Pass,
WB_System, WB_Predicate, WB_Group, WB_Having, WB_DBFlds

MsgAndLbl section
WBM_NoMatch

Including any other WBSP variable in subreport will not generate the error,
but the additional variables will be ignored.

 WB_Query variable in subreport file has different behavior compared to same

variable in ordinary WBSP file - it is possible to include $wbf, $wbrf, $wbfc,
$wbfu and $wbff functions in wb_query variable and when any of these are
included they should be written using report syntax (with square brackets)

and not input syntax (with braces). Any occurrence of these functions will be
replaced with proper content from superior recordset (one defined in main
WBSP file)

 Subreport ignores all code that is above <body...> and bellow </body> tags,
including the tags itself.

Subreports recordset can, but does not have to, be related to the data in the main
report. For example, you can use the main report to list publishers and subreport to
list titles published by them.

This is the code for main WBSP file (subreport line is marked red):
[FormFields]

WB_basename=biblio.mdb

wb_rcdset=publishers

WB_Command=Q

wb_showlogo=F

wb_order=name

<!--WB_BeginTemplate-->

<html>

<head>

<title>Publishers</title>

</head>

<body bgcolor="#ffffff" leftmargin="0" topmargin="0" marginwidth="0"

marginheight="0">

<!--WB_BeginDetail-->

<span style="font-family:Verdana;font-size:14px;font-

weight:bold;color:#0066cc;">$wbf[Name]

$wbsr[titles.sr]

<!--WB_EndDetail-->

</body>

</html>

The code for subreport file (titles.sr) looks like this (line that connects two recordsets
is marked blue):
[FormFields]

WB_basename=biblio.mdb

wb_rcdset=titles

wb_query=PubID=$wbf[PubID]

wb_order=[Year published]

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body bgcolor="#ffffff" leftmargin="0" topmargin="0" marginwidth="0"

marginheight="0">

<!--WB_BeginDetail-->

$wbf[Year published]-

$wbf[title] (ISBN:$wbf[ISBN])

<!--WB_EndDetail-->

</body>

</html>

The resulting page would look something like this:

Addison-Wesley Pub Co
1996-Real World FreeHand 5.0/5.5 (ISBN:0201883600)

Apress
2001-C# and the .NET Platform (ISBN:1893115593)

McGraw-Hill Professional Publishing
1996-Windows Nt Security Handbook (ISBN:0078822408)
1998-Microsoft Internet Information Server 4: the Complete Reference (ISBN:0078824575)
2000-Microsoft SMS Installer (ISBN:0072124474)
2001-McGraw-Hill's Encyclopedia of Networking & Telecommunications (ISBN:0072120053)

NAPP Publishing, Inc.
2000-Photoshop 6 Down and Dirty Tricks (ISBN:0967985307)

New Riders Publishing
2001-Photoshop 6 Photo-Retouching Secrets (ISBN:0735711461)

Osborne McGraw-Hill
2001-Windows 2000 Iis 5.0 : A Beginner's Guide (ISBN:0072133724)

Peachpit Press
1996-Netscape 3 for Macintosh Visual Quickstart Guide (ISBN:0201694085)
1997-Kai's Power Tools 3 for Windows Visual Quickstart Guide (ISBN:0201696681)
1997-Real World Freehand 7 (ISBN:0201688875)
1999-Non-Designer's Scan and Print Book, The (ISBN:0201353946)
2000-InDesign 1.0/1.5 for Macintosh and Windows: Visual QuickStart Guide (ISBN:0201710366)
2000-HTML 4 for the World Wide Web: Visual Quickstart Guide (ISBN:0201354934)
2000-Real World Adobe InDesign 1.5 (ISBN:0201354780)
2001-Macromedia FreeHand 10 for Windows and Macintosh: Visual QuickStart Guide
(ISBN:0201749653)
2001-Fireworks 4 for Windows and Macintosh Visual Quickstart Guide (ISBN:0201731339)

Sams
2000-Sams Teach Yourself Macromedia Dreamweaver 4 in 24 Hours (ISBN:0672320428)
2000-Sams Teach Yourself Macromedia Dreamweaver 3 in 24 Hours (ISBN:0672318830)

The Coriolis Group
1999-Apache Server for Windows Little Black Book: The Indispensable Guide to Day-to-Day Apache
Server Tips and Techniques (ISBN:1576103919)

Watson-Guptill Pubns
2000-www.type: Effective Typographic Design for the World Wide Web (ISBN:0823058603)
2000-www.color (ISBN:0823058573)
2001-Www.Layout : Effective Design and Layout for the World Wide Web (ISBN:0823058581)

Wordware Publishing
2000-Developer's Workshop to COM and ATL 3.0 (ISBN:1556227043)

Wrox Press Inc.
1997-Beginning C (ISBN:1861001142)
1998-Beginning Visual C++ 6 (ISBN:186100088X)
1999-Beginning Java 2 (ISBN:1861002238)

In this example main report uses table "Publishers" to list publishers in detail section
and then uses subreport to show titles published by current publisher. Unique
identification for every record in table "Publishers" is field PubID. In table "Titles"
publisher is identified with field PubID (also in every record). Setting WB_Query to

this value will generate subreport for every record in table "Publishers" and every

subreport will contain only those records from table "Titles" where PubID field has

the same value as PubID field of publishers recordset.
Subreport files can have any extension you want. The .sr extension in the example is
used to separate subreport from main WBSP file.

For security reasons it is good policy to name subreport files with extension .sr. It is

because WBSP server-side configuration variable HideDocuments in default value
include .sr extension, which means that WBSP will return HTTP error 404 (File not
found) whenever someone tries to execute any .sr file directly (e.g. by typing its URL

in browsers address bar).

18. Configuraton section subsections

Configuration section contains definitions for WBSP variables needed for a specific

task. It can have one to seven subsections, depending on purpose of the WBSP page
– Include, FormFields, Upload, MsgAndLbl, Referrer check, ErrorMessages

and UserData.

18.1 Subsection [Include]

This subsection contains a list of files (respecting the WBSP path rules) that WBSP
engine will check for input variables if they are not found in original WBSP file.
Include files are processed backwards – from end to top of the list. WBSP will stop

searching as soon as it finds first occurrence of the variable it search for.
Include files will be processed only if WBSP engine does not find the variable in
WBSP file, but before WBSP engine tries to read variable from HTML form input

fields. WBSP engine will read include files backwards (starting from the last file in the
include section).

Here is an example of Include section (marked blue):

<!--

[Include]

db.inc

[FormFields]

wb_rcdset=titles

wb_command=Q

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

<table border="1" cellspacing="0">

<tr>

<td>Year published</td>

<td>Title</td>

<td>ISBN</td>

</tr>

<!--WB_BeginDetail-->

<tr>

<td>$wbf[Year published]</td>

<td>$wbf[title]</td>

<td>$wbf[ISBN]</td>

</tr>

<!--WB_EndDetail-->

</table>

<center>$wbnavigator</center>

</body>

</html>

And include file db.inc looks like this:

[FormFields]

WB_Basename=biblio.mdb

Special case are include files named default.inc.

18.1.1 Default.inc

Special case of include file are files named default.inc. These files will always be
included in search, even if there is no Include section defined in WBSP file. WBSP

engine will try to read default.inc file located in same directory with WBSP file and, if
that file does not exist or does not contain specified variable, it will proceed reading
all default.inc files located in directories above current directory until wwwroot

directory of virtual host is reached. However, none of the files will be processed if
WBSP engine finds the variable either in WBSP file itself or in other include files.

18.2 Subsection [FormFields]

This subsection contains the variables that are essential for processing WBSP file.
Here you put information about the database, recordset, template, error template,

log file, redirection, etc.
These are the variables that can be stored in FormFields subsection (in alphabetic
order):

WB_AddCookie
WB_AddJoker
WB_AllowMultipart

WB_AndOr
WB_AppendMode
WB_Attach

WB_AttachField
WB_BaseName
WB_BCC

WB_BCCField
WB_CC

WB_CDate
WB_ChangeHFOn
WB_Command

WB_Connect
WB_ContentType
WB_DBAddData

WB_DBAdmin
WB_DBDelData
WB_DBEditData

WB_DBFlds

WB_Debug
WB_Defaults
WB_Destination

WB_ErrFile
WB_ErrMail
WB_ExactCount

WB_Exclusive
WB_Execute
WB_FileName

WB_Forced
WB_From

WB_FULID
WB_Group
WB_Having

WB_HideLogin
WB_HTTPHeader
WB_InsBR

WB_KeyName
WB_KeyValue
WB_LCID

WB_Log

WB_Order
WB_Pass
WB_PID

WB_Predicate
WB_Query
WB_RcdSet

WB_ReadOnly
WB_Redirect
WB_Required

WB_Section
WB_Separator

WB_SetADOCompatible
WB_ShowEmpty
WB_ShowLogo

WB_StartRec
WB_Subject
WB_System

WB_SysVarByForm
WB_TempName
WB_TimeOut

WB_To

WB_DBGroup

WB_DBLock
WB_DBModDes
WB_DBNewPass

WB_DBNPassCh
WB_DBObject
WB_DBOldPass

WB_DBReadData
WB_DBReadDes
WB_DBUser

WB_LogData

WB_LogTemp
WB_MailPort
WB_MailServer

WB_MatchCase
WB_MaxPages
WB_MaxRec

WB_MQ
WB_Null

WB_ToField

WB_UID
WB_Unicode
WB_UniFTS

WB_UserData
WB_Usr
WB_ValDelimiter

WB_WC
WB_WholeWord

Here's an example of FormFields section (marked blue):
[FormFields]

WB_basename=biblio.mdb

wb_rcdset=publishers

WB_Command=Q

wb_showlogo=F

wb_order=name

<!--WB_BeginTemplate-->

<html>

<head>

<title>Publishers</title>

</head>

<body bgcolor="#ffffff" leftmargin="0" topmargin="0" marginwidth="0"

marginheight="0">

<!--WB_BeginDetail-->

<span style="font-family:Verdana;font-size:14px;font-

weight:bold;color:#0066cc;">$wbf[Name]

$wbsr[titles.sr]

<!--WB_EndDetail-->

</body>

</html>

18.3 Subsection [Upload]

This subsection contains variables needed to control file upload using WBSP page.
Using these variables, the developer can control where uploaded files will be saved,
what is maximum size of a single file, what file types can not be uploaded, weather

existing file will be overwritten or not, where to store log data and what prefix to add
to URL of uploaded file. The variables that can be stored in this subsection are (in
alphabetic order):

WB_BaseURL
WB_Disallow
WB_MaxFSize

WB_Overwrite
WB_UploadDir
WB_UploadLog

Here's an example of upload subsection (marked with blue):

[FormFields]

WB_BaseName=biblioA.mdb

WB_AllowMultipart=T

WB_Command=A

WB_UID=ISBN

WB_Redirect=titlesQ.wbsp

WB_RcdSet=Titles

[Upload]

WB_Disallow=![jpg,gif]

WB_UploadDir=images/

WB_Overwrite=T

WB_MaxFSize=24576

WB_UploadLog=upload.log

To learn more about uploading files using WBSP read the "Uploading files using
WBSP" page.

18.4 Subsection [MsgAndLbl]

This subsection contains the variables that define labels and style for navigation links

(for previous, next, first and last page) and messages (empty recordset and deleted
records). They can contain any valid HTML code including WhizBase report tags and
functions both in input and output syntax.

It can also contain variables for formatting navigation links WB_DigitDir and
WB_Style .

These are variables that can be stored in this subsection (in alphabetic order):
WB_DigitDir

WB_Style
WBL_FirstPage
WBL_LastPage

WBL_NextPage
WBL_PrevPage
WBM_Deleted

WBM_NoMatch

Here is the example of MsgAndLbl section (marked blue):

<!--

[FormFields]

WB_basename=biblio.mdb

wb_rcdset=titles

wb_command=Q

[MsgAndLbl]

WB_DigitDir=digits/

WB_Style=color:#CC0000; text-decoration: none

wbl_nextpage=

wbl_prevpage=

wbl_lastpage=

wbl_firstpage=

wbm_nomatch=Sorry!
Your search returned no records!
<a >Please

try again with other parameters

wbm_deleted=Operation completed!
$WBDeleted record(s)

successfully removed from your database!

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

<table border="1" cellspacing="0">

<tr>

<td>Year published</td>

<td>Title</td>

<td>ISBN</td>

</tr>

<!--WB_BeginDetail-->

<tr>

<td>$wbf[Year published]</td>

<td>$wbf[title]</td>

<td>$wbf[ISBN]</td>

</tr>

<!--WB_EndDetail-->

</table>

<center>$wbnavigator</center>

</body>

</html>

To test this example, create images rightarrow.gif, leftarrow.gif, first.gif and last.gif
and place them in directory images located in same directory with this wbsp file. Also

create images of the digits 0 to 9 (name them 0.gif, 1.gif, 2.gif, ..., 9.gif) and place
them in directory digits located in same directory with this wbsp file.

18.5 Section [UserData]

This section contains a list of custom, user-defined variables that can be used in
WBSP files, in form:

UserVariable=AnyValue
These variables can be read using functions $WBRV and $WBRRV.
The user-defined variables in UserData section can contain WhizBase tags and

functions, same as any WBSP system variable (variables starting with WB_).

Here is an example of UserData section in default.inc file in virtual hosts document
root:

[UserData]

AdminEmail=admin@somemailserver.com

MyMailServer=mail.somemailserver.com

Later these variables can be accessed from your WBSP files like this:

[FormFields]

wb_mailserver=$wbrv{MyMailServer}

wb_bcc=$wbrv{AdminEmail}

Or like this:

<html>

<body>

some html code ...

Please send your comments/questions to

$wbrv[AdminEmail]

Thank you!

</body>

</html>

18.6 Section [ErrorMessages]

This section contains a list of custom error messages in form:

ErrorNumber=ErrorMessage
ErrorNumber is standard number reported by WBSP engine. It can be either
WhizBase error number or Jet or any other error number. It is not recommended to

put any Whizbase tags, functions, etc. in the ErrorMessage, because it can produce
unwanted results. If you need to place such content in ErrorMessage, it is strongly
recommended to test all possible situations before publishing the page to the real

world. The exception to this is a reserved word $WBERRRED: followed by the URL
of the web content where the WBSP engine will redirect visitor in the case of a
specific error occurrence. This will work only if error occurs before WBSP sends HTTP

header (e.g. if error occurs before WBSP starts report rendering).
This is useful for translating the error messages from English or for using IMG HTML

tag to display an image instead of error message, or to use <script></script> block
to process certain errors.

Here is an example of ErrorMessages section:

[ErrorMessages]

5034=<script>alert("You MUST provide values for all form

fields!");history.back();</script>

3030=<script>alert("Invalid login!");history.back();</script>

429=

5040=$WBERRRED:/requiredMissing.wbsp

18.7 Referrer Check Section

Section Referrer Check defines what commands will require validation of referring
page and what domains will be accepted as valid referrers.

It has a variable Referrer that contains a comma-separated list of servers (domains)
that will be accepted by WBSP engine as valid hosts for referring pages.
If this variable does not exist (or it is empty) then WBSP engine will not try to

validate referrer. If you want to allow referring page to be located only on same
server as WBSP file set this variable to $self$.
The main change from previous versions is that this section is part of the WBSP file

while in previous versions it was part of WhizBase.ssc server-side configuration file.

Here is an example of Referrer check section:

[Referrer Check]

Referrer=whizbase.com,wbsp.com

19. Update prefixes

As you could see from examples for updating records using WBSP, when new values
for database table fields are received, the engine will replace old values with new

ones. However in some cases there is a need to store new value that is related to old
one (e.g. increased by some value, decreased by some value, etc.), or to delete field
value completely by setting new value to empty string (""). Some of these tasks can

not be done at all (without these prefixes), and those that can be done require a lot

of work to accomplish. Therefore WBSP has defined update prefixes, special values
that should be added at the beginning of the WBF_ form fields, before the actual
value. The prefixes are:

$WBNULL$
WBP
$WB-$

$WB/$
$WB*$
WBA

WBR

19.1 $WBNULL$ - delete value

Availability

UPDATE command

Syntax
$wbnull$

Description
Since WBSP engine ignores empty WBF_tablefieldname form fields, it is not possible

to delete content of non-numeric field by sending empty string as a WBF_ field value.
Therefore WBSP uses $WBNULL$ as a value for WBF_ form field(s) to define which
database table fields in current (updated) record should be set to empty string. It

does not apply to the numeric fields (to clear them set their value to 0).

Here's an example:

<!--

[FormFields]

WB_BaseName=biblioA.mdb

WB_RcdSet=Titles

WB_Command=Q

-->

<!--WB_BeginTemplate-->

<html>

<body>

<!--WB_BeginDetail-->

<form action="TitlesUpdate.wbsp" method="POST">

<input type="hidden" name="WBF_ImageURL" value="$wbnull$">

<input type="hidden" name="wbf_isbn" value="$wbf[isbn]">

$wbf[Title]

<input type="submit" name="sClrImg" value="Remove image">

</form>

<!--WB_EndDetail-->

<center>$wbnavigator</center>

</body>

</html>

19.2 $WB-$ - subtract from value

Availability

UPDATE command

Syntax
$WB-$NumericValueToBeSubtracted

Description
This is a form field value prefix for doing mathematical operation of subtraction with

values of fields of numeric type. When WBSP engine receives a WBF_tablefieldname
form field value with this prefix for database table field of numeric type, instead of
replacing the old value with new one, it will subtract the new value from the existing

one (so new value stored in the database is OldDatabaseTableFieldValue-
NewFormValue)

Here's an example:

<!--

[FormFields]

WB_BaseName=biblioA.mdb

WB_RcdSet=Titles

WB_Command=Q

-->

<!--WB_BeginTemplate-->

<html>

<body>

<!--WB_BeginDetail-->

<form action="TitlesUpdate.wbsp" method="POST">

<input type="hidden" name="WBF_Qty" value="$wb-$10">

<input type="hidden" name="wbf_isbn" value="$wbf[isbn]">

$wbf[Title]

Current quantity: $wbf[Qty]

<input type="submit" name="sUpd" value="Take 10 books">

</form>

<!--WB_EndDetail-->

<center>$wbnavigator</center>

</body>

</html>

After running this example (and pressing the "Take 10 books" button), field Qty in
updated record of table Titles will be decreased by 10.

19.3 $WB*$ - multiply value by

Availability
UPDATE command

Syntax
$WB*$NumericValueToBeMultipliedBy

Description

This is a form field value prefix for doing mathematical operation of multiplication
with values of fields of numeric type. When WBSP engine receives a

WBF_tablefieldname form field value with this prefix for database table field of

numeric type, instead of replacing the old value with new one, it will multiply existing
value with the new value (so new value stored in the database is
OldDatabaseTableFieldValue*NewFormValue)

Here's an example:

<!--

[FormFields]

WB_BaseName=biblioA.mdb

WB_RcdSet=Titles

WB_Command=Q

-->

<!--WB_BeginTemplate-->

<html>

<body>

<!--WB_BeginDetail-->

<form action="TitlesUpdate.wbsp" method="POST">

<input type="hidden" name="WBF_Price" value="$wb*$2">

<input type="hidden" name="wbf_isbn" value="$wbf[isbn]">

$wbf[Title]

Current price: $wbf[Price]

<input type="submit" name="sUpd" value="Double the price">

</form>

<!--WB_EndDetail-->

<center>$wbnavigator</center>

</body>

</html>

After running this example (and pressing the "Double the price" button), field Price
in updated record of table Titles will be multiplied by 2.

19.4 $WB/$ - divide value with

Availability
UPDATE command

Syntax

$WB/$NumericValueToBeDividedBy

Description
This is a form field value prefix for doing mathematical operation of division with
values of fields of numeric type. When WBSP engine receives a WBF_tablefieldname

form field value with this prefix for database table field of numeric type, instead of
replacing the old value with new one, it will divide existing value with the new value
(so new value stored in the database is OldDatabaseTableFieldValue/NewFormValue)

Here's an example:

<!--

[FormFields]

WB_BaseName=biblioA.mdb

WB_RcdSet=Titles

WB_Command=Q

-->

<!--WB_BeginTemplate-->

<html>

<body>

<!--WB_BeginDetail-->

<form action="TitlesUpdate.wbsp" method="POST">

<input type="hidden" name="WBF_Price" value="$wb/$2">

<input type="hidden" name="wbf_isbn" value="$wbf[isbn]">

$wbf[Title]

Current price: $wbf[Price]

<input type="submit" name="sUpd" value="Reduce the price by half">

</form>

<!--WB_EndDetail-->

<center>$wbnavigator</center>

</body>

</html>

After running this example (and pressing the "Reduce the price by half" button), field
Price in updated record of table Titles will be divided by 2.

19.5 WBA - append text to value

Availability
UPDATE command

Syntax

WBATextToBeAppended

Description
This is a form field value prefix for appending text to fields of string types (text,
memo, etc.). When WBSP engine receives a WBF_tablefieldname form field value

with this prefix for database table field of string type, instead of replacing the old
value with new one, it will append the new value to the existing one (so new value
stored in the database is OldDatabaseTableFieldValueNewFormValue)

Here's an example:

<!--

[FormFields]

WB_BaseName=biblioA.mdb

WB_RcdSet=Titles

WB_Command=Q

-->

<!--WB_BeginTemplate-->

<html>

<body>

<!--WB_BeginDetail-->

<form action="TitlesUpdate.wbsp" method="POST">

<input type="hidden" name="WBF_Title" value="wba - second edition">

<input type="hidden" name="wbf_isbn" value="$wbf[isbn]">

$wbf[Title]

<input type="submit" name="sUpd" value="Second edition">

</form>

<!--WB_EndDetail-->

<center>$wbnavigator</center>

</body>

</html>

After running this example (and pressing the "Second edition" button), text -
second edition will be appended to the field Title in updated record of table Titles.

19.6 WBP - add to value

Availability
UPDATE command

Syntax

WBPNumericValueToBeAdded

Description
This is a form field value prefix for doing mathematical operation of addition with
values of fields of numeric type. When WBSP engine receives a WBF_tablefieldname

form field value with this prefix for database table field of numeric type, instead of
replacing the old value with new one, it will add new value to the existing one (so
new value stored in the database is NewFormValue+OldDatabaseTableFieldValue)

Here's an example:

<!--

[FormFields]

WB_BaseName=biblioA.mdb

WB_RcdSet=Titles

WB_Command=Q

-->

<!--WB_BeginTemplate-->

<html>

<body>

<!--WB_BeginDetail-->

<form action="TitlesUpdate.wbsp" method="POST">

<input type="hidden" name="WBF_Qty" value="wbp10">

<input type="hidden" name="wbf_isbn" value="$wbf[isbn]">

$wbf[Title]

Current quantity: $wbf[Qty]

<input type="submit" name="sUpd" value="Add 10 books">

</form>

<!--WB_EndDetail-->

<center>$wbnavigator</center>

</body>

</html>

After running this example (and pressing the "Add 10 books" button), field Qty in
updated record of table Titles will be increased by 10.

19.7 WBR - remove text from value

Availability

UPDATE command

Syntax
WBATextToBeRemoved

Description
This is a form field value prefix for removing text from fields of string types (text,

memo, etc.). When WBSP engine receives a WBF_tablefieldname form field value
with this prefix for database table field of string type, instead of replacing the old
value with new one, it will search the existing value for value sent by form (all text

after wbr prefix) and if it founds it, remove it from the database field (so new
value stored in the database is OldDatabaseTableFieldValue with removed all

occurrences of NewFormValue)

Here's an example:

<!--

[FormFields]

WB_BaseName=biblioA.mdb

WB_RcdSet=Titles

WB_Command=Q

-->

<!--WB_BeginTemplate-->

<html>

<body>

<!--WB_BeginDetail-->

<form action="TitlesUpdate.wbsp" method="POST">

<input type="hidden" name="WBF_Title" value="wbr - second edition">

<input type="hidden" name="wbf_isbn" value="$wbf[isbn]">

$wbf[Title]

<input type="submit" name="sUpd" value="Remove second edition">

</form>

<!--WB_EndDetail-->

<center>$wbnavigator</center>

</body>

</html>

After running this example (and pressing the "Remove second edition" button), if
text - second edition exists in field Title of updated record of table Titles, it will
be removed. If the text does not exist (not found), the database field will not be

changed.

20. Report tags

Report tags are WBSP placeholders that do not have any arguments, and therefore
their syntax does not necessarily include neither square brackets nor braces.
However, if for any reason you need to pass them as arguments to any WBSP

function you have to add empty square brackets [] or braces {} at the end.

$WBADMIN
$WBFILEREPORT
$WBFULID

$WBDOCROOT
$WBCURRDIR
$WBTIMER

Database related tags

$WBQUERY
$WBCQUERY

$WBDELETED
$WBRECORDBREAK

Error message tags
$WBERRDESC

$WBERRMSG
$WBERRNUM
$WBERRMAIL

Navigation tags

$WBNAVIGATOR
$WBPAGENUMS
$WBPREVPAGE

$WBNEXTPAGE
$WBFIRSTPAGE
$WBLASTPAGE

20.1 $WBAdmin

Availability

$WBAdmin is available for use with following WBSP commands:
Change Password
Add User or Group

Delete User or Group
Add User to Group
Delete User from Group

Set user's permissions
Read user's permissions
Compact database

Syntax

$WBAdmin
$WBAdmin[]

Returns
Report of executed database administration command.

Here's an example:

<!--

[FormFields]

wb_basename=biblioA.mdb

wb_command=CD

-->

<!--WB_BeginTemplate-->

<html>

<body>

$wbadmin

</body>

</html>

After running this example database biblioA.mdb will be compacted and repaired (if
needed), and default message will be displayed:

Database file biblioA.mdb successfully repaired and compacted!

20.2 $WBCurrDir - current directory

Availability
$WBCurrDir is available for use with all WBSP commands.

Syntax

$WBCurrDir
$WBCurrDir[]

Returns
Path to the directory of current WBSP file (directory where it is located) relative to

the $WBDocRoot.

Here's an example:

<!--

[FormFields]

wb_command=R

-->

<!--WB_BeginTemplate-->

<html>

<body>

The currenet script directory is:

$wbcurrdir

</body>

</html>

After running this example, the resulting page in web browser may look like this:

The current script directory is:

/wbsp/basic/

20.3 $WBCurrDirA - current directory absolute path

Availability

$WBCurrDirA is available for use with all WBSP commands.

Syntax
$WBCurrDirA
$WBCurrDirA[]

Returns

Physical path to the directory of current WBSP file (directory where it is located).

Here's an example:

<!--

[FormFields]

wb_command=R

-->

<!--WB_BeginTemplate-->

<html>

<body>

The currenet script directory is:

$WBCurrDirA

</body>

</html>

After running this example, the resulting page in web browser may look like this:

The current script directory is:

E:\WebSrv\webpages\wbsp\basic\

20.4 $WBDocRoot - root directory of virtual host

Availability

$WBDocRoot is available for use with all WBSP commands.

Syntax
$WBDocRoot
$WBDocRoot[]

Returns

Physical path to the root directory of the current virtual host.

Here's an example:

<!--

[FormFields]

wb_command=R

-->

<!--WB_BeginTemplate-->

<html>

<body>

The document root directory is:

$wbdocroot

</body>

</html>

After running this example, the resulting page in web browser may look like this:

The document root directory is:

E:\WebSrv\webpages\

20.5 $WBFileReport

Availability
$WBFileReport is available for use with WBSP file commands:

Delete file
Write to file

Syntax
$WBFileReport

$WBFileReport[]

Returns
Report of executed file command.

Here's an example:

<!--

[FormFields]

WB_FileName =/default.inc

WB_Section =UserData

WB_KeyName =AdminName

WB_KeyValue =John Doe

wb_command=WF

-->

<!--WB_BeginTemplate-->

<html>

<body>

$wbfilereport

</body>

</html>

After running this example, user variable AdminName will be set to new value John
Doe, and default message will be displayed:

Key value for AdminName sucessfully changed in file /default.inc!

20.6 $WBFULID - upload form ID

Availability
$WBFULID is available for use with all WBSP commands, but it requires WB_FULID

variable to be set to TRUE in the configuration section of the same WBSP document.

Syntax

$WBFULID
$WBFULID[]

Returns
Server-side unique form upload ID generated by WhizBase.

Here's an example:

[FormFields]

WB_AllowMultipart=T

WB_Command=R

wb_showlogo=f

wb_timeout=300

WB_FULID=$wbif{"$wbv{image}"=""|t|f}

[Upload]

WB_Disallow=![jpg,gif]

WB_UploadDir=/

WB_BaseURL=/

WB_Overwrite=F

WB_MaxFSize=10485760

WB_UploadLog=upload.log

<!--WB_BeginTemplate-->

<html>

<head>

<title>$wbif["$wbv[image]"=""|Upload file|File uploaded]</title>

</head>

<body>

$wbif["$wbv[image]"=""|< br><form action="$wbe[script_name]"

method="post" ENCTYPE="multipart/form-

data"onsubmit="document.getElementById('ifrprogress').src='ru.wbsp?fid=

$wbfulid[]';">

Select file (*.jpg;*.gif - max. 10MB): <input type="file" name="image"

size="20"> <input type="submit" name="sButt" value="Upload">

</form>

<iframe src="" width="300" height="100" id="ifrprogress"></iframe>

|

Open uploaded image
$wbv[image]

]

</body>

</html>

For this example you'll need file ru.wbsp that can be found here.
After running this example, WhizBase will upload selected image to the server
displaying the progress in an IFRAME.

20.7 $WBTimer - system timer

Availability

$WBTimer is available for use with all WBSP commands.

Syntax
$WBTimer
$WBTimer[]

Returns

Number of seconds elapsed since midnight.

Here's an example:

[FormFields]

WB_basename=biblio.mdb

wb_rcdset=publishers

WB_Command=Q

wb_showlogo=F

wb_order=name

wb_userdata=$wbtimer

<!--WB_BeginTemplate-->

<html>

<head>

<title>Publishers</title>

</head>

<body bgcolor="#ffffff" leftmargin="0" topmargin="0" marginwidth="0"

marginheight="0">

<!--WB_BeginDetail-->

<span style="font-family:Verdana;font-size:14px;font-

weight:bold;color:#0066cc;">$wbf[Name]

$wbsr[titles.sr]

<!--WB_EndDetail-->

Processing time (seconds):$wbcalc[$wbtimer[]-$wbfn[userdata]]

</body>

</html>

After running this example, total processing time will be displayed at the bottom of
the resulting page (actual value may wary, depending on the system performance):

Processing time (seconds):0,690000000002328

20.8 Database related tags

Database related tags are WBSP keywords related to database operations.
$WBQUERY
$WBCQUERY

$WBDELETED
$WBRECORDBREAK

20.8.1 $WBCQuery - URL encoded query expression

Availability
$WBCQuery is available for use with following recordset related WBSP commands:

UPDATE
DELETE
QUERY

Send Personal Mail (if recordset is used)
Send Bulk Mail

Syntax
$WBCQuery

$WBCQuery[]

Returns

WHERE clause of the SQL expression used to generate current recordset in url-
encoded format.

Here's an example:

[FormFields]

WB_BaseName=biblioA.mdb

WB_Command=D

WB_UID=ISBN

WB_RcdSet=Titles

wb_tempname=$default$

[MsgAndLbl]

WBM_Deleted=Operation completed! $WBDeleted record(s) removed from your

database!
Recordset generated upon following

condition(s):
$WBCQuery

After running this example by typing its URL followed by ?wbf_isbn=isbnvalue (e.g.
http://localhost/delete.wbsp?wbf_isbn=0823058573), WBSP will display
delete report with detailed search condition information:

Operation completed! 1 record(s) removed from your database!
Recordset generated upon following condition(s):

isbn%20%3D%20%270823058573%27

20.8.2 $WBDeleted - number of deleted records

Availability

DELETE command.

Syntax
$WBDeleted
$WBDeleted[]

Returns

Number of deleted records.

Here's an example:

[FormFields]

WB_BaseName=biblioA.mdb

WB_Command=D

WB_UID=ISBN

WB_RcdSet=Titles

wb_tempname=$default$

[MsgAndLbl]

WBM_Deleted=Operation completed! $WBDeleted record(s) removed from your

database!

After running this example by typing its URL followed by ?wbf_isbn=isbnvalue (e.g.
http://localhost/delete.wbsp?wbf_isbn=0823058573), WBSP will display

delete report as defined in WBM_Deleted variable:

Operation completed! 1 record(s) removed from your database!

20.8.3 $WBQuery - query expression

Availability

$WBQuery is available for use with following recordset related WBSP commands:
UPDATE
DELETE

QUERY
Send Personal Mail (if recordset is used)
Send Bulk Mail

Syntax

$WBQuery
$WBQuery[]

Returns

WHERE clause of the SQL expression used to generate current recordset.

Here's an example:

[FormFields]

WB_BaseName=biblioA.mdb

WB_Command=D

WB_UID=ISBN

WB_RcdSet=Titles

wb_tempname=$default$

[MsgAndLbl]

WBM_Deleted=Operation completed! $WBDeleted record(s) removed from your

database!
Recordset generated upon following

condition(s):
$WBQuery

After running this example by typing its URL followed by ?wbf_isbn=isbnvalue (e.g.
http://localhost/delete.wbsp?wbf_isbn=0823058573), WBSP will display

delete report with detailed search condition information:

Operation completed! 1 record(s) removed from your database!
Recordset generated upon following condition(s):

isbn = '0823058573'

20.8.4 $WBRecordBreak - force next record

Availability
$WBRecordBreak is available for use with following recordset related WBSP
commands:

QUERY
Send Personal Mail (if recordset is used)
Send Bulk Mail

Syntax

$WBRecordBreak
$WBRecordBreak[]

Returns
Nothing.

Description

This tag is not a placeholder and will not be replaced by anything (it will not be
shown on the report either). Its purpose is to move recordset one record forward.

Important:When $WBRecordBreak is used, WBSP will display WB_maxrec *

(Number of $WBRecordBreak tags +1)
For example - if WB_MaxRec=10 and there is only one $WBRecordBreak tag on the
page, WBSP will display 20 records per page.< /p>

In the following example we used $WBRecordBreak to make different background

color for odd and even records:

<!--

[FormFields]

WB_basename=biblioa.mdb

wb_rcdset=titles

wb_command=Q

wb_maxrec=5

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

<table border="1" cellspacing="0">

<tr>

<td>Year published</td>

<td>Title</td>

<td>ISBN</td>

</tr>

<!--WB_BeginDetail-->

<tr>

<td>$wbf[Year published]</td>

<td>$wbf[title]</td>

<td>$wbf[ISBN]</td>

</tr>

$wbrecordbreak

<tr bgcolor="#c0c0c0">

<td>$wbf[Year published]</td>

<td>$wbf[title]</td>

<td>$wbf[ISBN]</td>

</tr>

<!--WB_EndDetail-->

</table>

<center>$wbnavigator</center>

</body>

</html>

After running this example, resulting page received by browser should look

something like this:

Year
published

Title ISBN

2001
McGraw-Hill's Encyclopedia of Networking &
Telecommunications

0072120053

2000 Microsoft SMS Installer 0072124474

2001 Windows 2000 Iis 5.0 : A Beginner's Guide 0072133724

1996 Windows Nt Security Handbook 0078822408

1998
Microsoft Internet Information Server 4: the Complete

Reference
0078824575

1999 Non-Designer's Scan and Print Book, The 0201353946

2000 Real World Adobe InDesign 1.5 0201354780

2000 HTML 4 for the World Wide Web: Visual Quickstart Guide 0201354934

1997 Real World Freehand 7 0201688875

1996 Netscape 3 for Macintosh Visual Quickstart Guide 0201694085

20.9 Error message tags

Error message tags are WBSP placeholders for various parts of an error message.
They are not intended to be used on the ordinary WBSP pages nor in normal

circumstances, but in error template file (defined by WB_ErrFile variable and sent to
client when error occurs). Their purpose is to format and/or hide some of the error
details. Also, when output type (Content-type) is not text/html they can be used to

generate proper error report (e.g. XML, XHTML, WML, RTF, etc.)
$WBERRDESC
$WBERRMSG

$WBERRNUM
$WBERRMAIL

20.9.1 $WBErrDesc - full error description

Availability
$WBErrDesc is available for use with error template file, processed by WBSP in case

of a run-time error.

Syntax
$WBErrDesc

$WBErrDesc[]

Returns
Full error description including error message and error number.

Here's an example of an error template file:

<html>

<head>

<title>Sorry!</title>

</head>

<body>

$wberrdesc

</body>

</html>

When error occurs, instead of showing the default error report:

Error in /wbsp/basic/delete.wbsp

The following internal error has occurred:

Illegal unique identifier! Query returned more than one record!

Error Number = 5014

Please note what you were doing when this problem occurred, so we can identify
and correct it. Write down the Web page you were using, any data you may have
entered into a form or search box, and anything else that may help us duplicate the
problem.Then contact the administrator of this service:

<webmaster@localhost>

WBSP will display following:

Illegal unique identifier! Query returned more than one record!

Error Number = 5014

20.9.2 $WBErrMail - email address shown in error report

Availability

$WBErrMail is available for use with error template file, processed by WBSP in case
of a run-time error.

Syntax
$WBErrMail

$WBErrMail[]

Returns
Email address specified in WB_ErrMail form field for current WBSP file.

Here's an example of an error template file:

<html>

<head>

<title>Sorry!</title>

</head>

<body>

Sorry!

The page you requested produced an error!

Please contact the administrator of this service at <a

drkred">$wberrmail">$wberrmail

</body>

</html>

When error occurs, instead of showing the default error report:

Error in /wbsp/basic/delete.wbsp

The following internal error has occurred:

Illegal unique identifier! Query returned more than one record!

Error Number = 5014

Please note what you were doing when this problem occurred, so we can identify
and correct it. Write down the Web page you were using, any data you may have

entered into a form or search box, and anything else that may help us duplicate the
problem.Then contact the administrator of this service:

<webmaster@localhost>

WBSP will display following:

Sorry!
The page you requested produced an error!

Please contact the administrator of this service at webmaster@localhost

20.9.3 $WBErrMsg - error description (text only)

Availability

$WBErrMsg is available for use with error template file, processed by WBSP in case
of a run-time error.

Syntax

$WBErrMsg
$WBErrMsg[]

Returns
Text-only error description without error number.

Here's an example of an error template file:

<html>

<head>

<title>Sorry!</title>

</head>

<body>

$wberrMsg

</body>

</html>

When error occurs, instead of showing the default error report:

Error in /wbsp/basic/delete.wbsp

The following internal error has occurred:

Illegal unique identifier! Query returned more than one record!

Error Number = 5014

Please note what you were doing when this problem occurred, so we can identify
and correct it. Write down the Web page you were using, any data you may have

entered into a form or search box, and anything else that may help us duplicate the
problem.Then contact the administrator of this service:

<webmaster@localhost>

WBSP will display following:

Illegal unique identifier! Query returned more than one record!

20.9.4 $WBErrNum - error number

Availability
$WBErrNum is available for use with error template file, processed by WBSP in case
of a run-time error.

Syntax

$WBErrNum
$WBErrNum[]

Returns

Error number, without any text message.

Here's an example of an error template file:

<html>

<head>

<title>Sorry!</title>

</head>

<body>

Sorry, the requested page produced the error number $wberrNum

</body>

</html>

When error occurs, instead of showing the default error report:

Error in /wbsp/basic/delete.wbsp

The following internal error has occurred:

Illegal unique identifier! Query returned more than one record!

Error Number = 5014

Please note what you were doing when this problem occurred, so we can identify
and correct it. Write down the Web page you were using, any data you may have

entered into a form or search box, and anything else that may help us duplicate the
problem.Then contact the administrator of this service:

<webmaster@localhost>

WBSP will display following:

Sorry, the requested page produced the error number 5014

20.10 Navigation tags

Navigation tags are WBSP placeholders for various parts of a report navigation block
(links used to navigate through report pages).
$WBNAVIGATOR

$WBPAGENUMS
$WBPREVPAGE

$WBNEXTPAGE
$WBFIRSTPAGE
$WBLASTPAGE

20.10.1 $WBFirstPage - navigation link to first report page

Availability

QUERY command

Syntax
$WBFirstPage
$WBFirstPage[]

Returns

Link to the first page of the report.

Here's an example:

<!--

[FormFields]

WB_basename=biblio.mdb

wb_rcdset=titles

wb_command=Q

wb_maxrec=5

wb_startrec=$wbif{"$wbv{wb_startrec}"=""|16|$wbv{wb_startrec}}

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

<table border="1" cellspacing="0">

<tr>

<td>Year published</td>

<td>Title</td>

<td>ISBN</td>

</tr>

<!--WB_BeginDetail-->

<tr>

<td>$wbf[Year published]</td>

<td>$wbf[title]</td>

<td>$wbf[ISBN]</td>

</tr>

<!--WB_EndDetail-->

</table>

<center>Back to $WBFirstPage</center>

</body>

</html>

After running this example, WBSP will display the report with link to first page only:

Back to First page

20.10.2 $WBLastPage - navigation link to last report page

Availability

QUERY command

Syntax
$WBLastPage

$WBLastPage[]

Returns
Link to the last page of the report.

Here's an example:

<!--

[FormFields]

WB_basename=biblio.mdb

wb_rcdset=titles

wb_command=Q

wb_maxrec=5

wb_startrec=$wbif{"$wbv{wb_startrec}"=""|16|$wbv{wb_startrec}}

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

<table border="1" cellspacing="0">

<tr>

<td>Year published</td>

<td>Title</td>

<td>ISBN</td>

</tr>

<!--WB_BeginDetail-->

<tr>

<td>$wbf[Year published]</td>

<td>$wbf[title]</td>

<td>$wbf[ISBN]</td>

</tr>

<!--WB_EndDetail-->

</table>

<center>Go to $WBLastPage</center>

</body>

</html>

After running this example, WBSP will display the report with link to last page only:

Go to Last page

20.10.3 $WBNavigator - full set of report navigation links

Availability
QUERY command

Syntax
$WBNavigator

$WBNavigator[]

Returns
Full set of report navigation links (page-number links and links to first, last, previous
and next page).

Here's an example:

<!--

[FormFields]

WB_basename=biblio.mdb

wb_rcdset=titles

wb_command=Q

wb_maxrec=5

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

<table border="1" cellspacing="0">

<tr>

<td>Year published</td>

<td>Title</td>

<td>ISBN</td>

</tr>

<!--WB_BeginDetail-->

<tr>

<td>$wbf[Year published]</td>

<td>$wbf[title]</td>

<td>$wbf[ISBN]</td>

</tr>

<!--WB_EndDetail-->

</table>

<center>$WBNavigator</center>

</body>

</html>

After running this example, WBSP will display the report with all navigation links at
the bottom, separate links to every page (page-number links) and links to first, last,
previous and next page:

1 2 3 4 5 6

First page Previous page Next page Last page

20.10.4 $WBNextPage - navigation link to next report page

Availability
QUERY command

Syntax

$WBNextPage
$WBNextPage[]

Returns
Link to the next page of the report.

Here's an example:

<!--

[FormFields]

WB_basename=biblio.mdb

wb_rcdset=titles

wb_command=Q

wb_maxrec=5

wb_startrec=$wbif{"$wbv{wb_startrec}"=""|16|$wbv{wb_startrec}}

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

<table border="1" cellspacing="0">

<tr>

<td>Year published</td>

<td>Title</td>

<td>ISBN</td>

</tr>

<!--WB_BeginDetail-->

<tr>

<td>$wbf[Year published]</td>

<td>$wbf[title]</td>

<td>$wbf[ISBN]</td>

</tr>

<!--WB_EndDetail-->

</table>

<center>Go to $WBPrevPage or $WBNextPage</center>

</body>

</html>

After running this example, WBSP will display the report with links to previous and
next pages:

Go to Previous page or Next page

20.10.5 $WBPageNums - links to separate report pages

Availability
QUERY command

Syntax
$WBPageNums

$WBPageNums[]

Returns
Separate links to every page of the report.

Here's an example:

<!--

[FormFields]

WB_basename=biblio.mdb

wb_rcdset=titles

wb_command=Q

wb_maxrec=5

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

<table border="1" cellspacing="0">

<tr>

<td>Year published</td>

<td>Title</td>

<td>ISBN</td>

</tr>

<!--WB_BeginDetail-->

<tr>

<td>$wbf[Year published]</td>

<td>$wbf[title]</td>

<td>$wbf[ISBN]</td>

</tr>

<!--WB_EndDetail-->

</table>

<center>$WBPageNums</center>

</body>

</html>

After running this example, WBSP will display the report with separate links to every
page of the report:

1 2 3 4 5 6

20.10.6 $WBPrevPage - navigation link to previous report page

Availability

QUERY command

Syntax
$WBPrevPage
$WBPrevPage[]

Returns

Link to the previous page of the report.

Here's an example:

<!--

[FormFields]

WB_basename=biblio.mdb

wb_rcdset=titles

wb_command=Q

wb_maxrec=5

wb_startrec=$wbif{"$wbv{wb_startrec}"=""|16|$wbv{wb_startrec}}

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

<table border="1" cellspacing="0">

<tr>

<td>Year published</td>

<td>Title</td>

<td>ISBN</td>

</tr>

<!--WB_BeginDetail-->

<tr>

<td>$wbf[Year published]</td>

<td>$wbf[title]</td>

<td>$wbf[ISBN]</td>

</tr>

<!--WB_EndDetail-->

</table>

<center>Go to $WBPrevPage or $WBNextPage</center>

</body>

</html>

After running this example, WBSP will display the report with links to previous and
next pages:

Go to Previous page or Next page

20.11 Session tags

20.11.1 $WBACTSES - active sessions

Availability

$WBACTSES is available for use with all WBSP commands.

Syntax
$WBACTSES
$WBACTSES[]

Returns

Number of active sessions.

Here's an example:

<!--

[FormFields]

wb_command=R

wb_usesessions=T

-->

<!--WB_BeginTemplate-->

<html>

<body>

There are $wbactses users on-line.

</body>

</html>

After running this example, the resulting page in web browser may look like this:

There are 27 users on-line.

21. Functions

Functions are WBSP placeholders with one or more arguments, separated with

vertical line (|), and enclosed in square brackets or braces depending on WBSP
page section in which they are located and processing phase in which they should be
processed. Based on this, functions use report syntax ($wbfnname[arg]) and input

syntax ($wbfnname{arg}). To learn more about differences between these two
syntax models, please read the next topic - Difference between report and input
functions . All functions that have more than one argument (separated with |) can be

written in multi-line form. However, none of the arguments can be broken in
separate lines, unless it is also WhizBase function.

This is a list of WhizBase functions in alphabetical order:

$WBAADD
$WBACHG
$WBALEN

$WBALIDX
$WBASRC
$WBBAND

$WBFSIZE
$WBFTIME
$WBFU

$WBFUP
$WBFUT
$WBGC

$WBRF
$WBRIGHT
$WBRINC

$WBRRV
$WBRUN
$WBRV

$WBBOR
$WBBXOR

$WBCALC
$WBCASE
$WBCNL

$WBCSTR
$WBDIR
$WBE

$WBERR
$WBESC
$WBF

$WBFC
$WBFF
$WBFN

$WBFORMAT

$WBGETURL
$WBGETV

$WBGS
$WBGV
$WBHE

$WBIF
$WBINC
$WBINDOF

$WBLEFT
$WBLEN
$WBLINDOF

$WBMID
$WBMREPL
$WBP

$WBREPL

$WBSETV
$WBSPLIT

$WBSR
$WBSRQ
$WBTRIM

$WBUNESC
$WBUNTIL
$WBURL

$WBV
$WBVA
$WBVC

$WBVR
$WBVS
$WBVSC

$WBWHILE

21.1 Difference between report and input functions

WhizBase input functions are similar to the report functions. They have different

syntax (input functions use general syntax $wbfnname {arg} instead of report
functions - $wbfnname[arg]), but the main difference is in way of using them.
Inserting server’s date/time in the database as record update time, for example,

without input functions requires some serious work including unnecessary
redirections and resource consuming.

Example:

If you put hidden field in your report like this

<input type="hidden" name="WBF_LastUpdated" value="$WBFN[fdt(dd-mmm-

yyyy hh:mm:ss)]">

then, when WBSP engine process this report, this field has value of server's
date/time when the page was sent to browser:
<input type="hidden" name="WBF_LastUpdated" value="03-Apr-2008

13:22:47">

This field will have the same value even if the form is submitted hours later, what
means that it is completely useless for tracking record update time.

However if you use same function in input syntax WhizBase will ignore it during
report processing. To use same function as above, but this time in input syntax

simply change the value as follows:

<input type="hidden" name="WBF_LastUpdated" value="$WBFN{fdt(dd-mmm-

yyyy hh:mm:ss)}">

WBSP will ignore this function during report processing and visitor's browser will
receive exactly the same code as you wrote it in report:

<input type="hidden" name="WBF_LastUpdated" value="$WBFN{fdt(dd-mmm-

yyyy hh:mm:ss)}">

As an opposite from previous case it is of no importance how long you will wait

before submitting this form. Once you submit the form WBSP will receive

$WBFN{fdt(dd-mmm-yyyy hh:mm:ss)}
as a value for WBF_LastUpdated form field, process it and write exact update time to
DB field named LastUpdated.

Because input functions are processed before opening the database it is not possible
to use DB related functions as input functions (except $WBSR and $WBSRQ). Using
these functions in input syntax will result with empty string.

Any WB form field can have input function in its value and they can be used both in
HTML forms and WBSP files:

WB_Query=$wbif{"$wbv{pg}"=""|PageID=1|PageID=$wbv{pg}}

Or
<input type="hidden" name="WB_TempName" value="$WBFN{HTUser}.htm">

21.2 $WBAADD - add element to array

Important: $WBAADD function has effect on entire WBSP page and all it's sub
elements (configuration section, included files, sub reports, etc.). All instances of
$WBAADD function that use the same array name will add new element to the same

array regardless of their location inside WBSP page.

Availability
$WBAADD is available for use with all WBSP commands.

Syntax
$WBAADD{arrayname|varvalue|showvar}

$WBAADD[arrayname|varvalue|showvar]

Parameters
arrayname - the name of the array to which new element will be added

varvalue - the value of the new element that will be added
showvar - optional parameter - if set to true (T,ON,1) WhizBase will show the new
length of resulting array

Returns

New number of elements in resulting array if showvar parameter is set to true,
otherwise it returns nothing, just adds the element.

Example

<!--

[FormFields]

wb_command=R

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBAAdd</title>

</head>

<body>

$wbsetv[filecount|0]

$wbsplit[$wbdir[|||d]|dirlist|,|f]

$wbwhile[$wbgetv[filecount]<=$wbsplit[$wbdir[]|fillist|,|t]

|

$wbaadd[dirlist|$wbgetv[fillist($wbgetv[filecount])]|f]

$wbsetv[filecount|$wbcalc[$wbgetv[filecount]+1]]

]

$wbsetv[filecount|0]$wbwhile[$wbgetv[filecount]<=$wbalen[dirlist]

|

$wbgetv[dirlist($wbgetv[filecount])]

$wbsetv[filecount|$wbcalc[$wbgetv[filecount]+1]]

]

</body>

</html>

After running this example, the resulting page in browser should contain the list of all
directories and files in the directory where current WBSP file is located.

21.3 $WBACHG - change value of array element

Availability
$WBACHG is available for use with all WBSP commands.

Syntax

$WBACHG{arrayname|index|varvalue|show}
$WBACHG[arrayname|index|varvalue|show]

Parameters
arrayname - the name of the array

index - index of the element
varvalue - the new value
show - optional parameter - if set to true (T,ON,1) WhizBase will return 1 if function

was successful and 0 if not (element not found)

Returns
1 if function was successful and 0 if not (element not found).

Example

<!--

[FormFields]

wb_command=R

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBAChg</title>

</head>

<body>

$wbsplit[Mon,Tue,Wed,thu,Fri,Sat,Sun|days|,|f]

$wbgetv[days(3)]

$wbachg[days|3|Thu]

$wbgetv[days(3)]

</body>

</html>

After running this example, the resulting page in browser should look like this:

thu

Thu

21.4 $WBALEN - array length

Availability
$WBALEN is available for use with all WBSP commands.

Syntax
$WBALEN{arrayname}

$WBALEN[arrayname]

Parameters
arrayname - the name of the array

Returns
Number of elements in requested WBSP array

Example

<!--

[FormFields]

wb_command=R

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBSplit</title>

</head>

<body>

$wbsetv[filecount|0]

$wbsplit[$wbdir[]|dirlist|,|f]

$wbwhile[$wbgetv[filecount]<=$wbalen[dirlist]

|

$wbgetv[dirlist($wbgetv[filecount])]

$wbsetv[filecount|$wbcalc[$wbgetv[filecount]+1]]

]

</body>

</html>

After running this example, the resulting page in browser should contain the list of all
files in the directory where current WBSP file is located.

21.5 $WBALIDX - last array index

Availability

$WBALIDX is available for use with all WBSP commands.

Syntax
$WBALIDX{arrayname}
$WBALIDX[arrayname]

Parameters

arrayname - the name of the array

Returns

Last index value in requested WBSP array

Example

<!--

[FormFields]

wb_command=R

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBSplit</title>

</head>

<body>

$wbsetv[filecount|0]

$wbsplit[$wbdir[]|dirlist|,|f]

$wbwhile[$wbgetv[filecount]<=$WBALIDX[dirlist]

|

$wbgetv[dirlist($wbgetv[filecount])]

$wbsetv[filecount|$wbcalc[$wbgetv[filecount]+1]]

]

</body>

</html>

After running this example, the resulting page in browser should contain the list of all
files in the directory where current WBSP file is located.

21.6 $WBASRC - search array elements for specified value

Availability
$WBASRC is available for use with all WBSP commands.

Syntax

$WBASRC{arrayname|varvalue}
$WBASRC[arrayname|varvalue]

Parameters

arrayname - the name of the array to search
varvalue - the value to search for

Returns
The array index of the first matching element. If varvalue is not found the function

returns -1.

Example

<!--

[FormFields]

wb_command=R

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBASrc</title>

</head>

<body>

$wbsplit[Mon,Tue,Wed,Thu,Fri,Sat,Sun|days|,|f]

$wbasrc[days|Thu]

</body>

</html>

After running this example, the resulting page in browser should look like this:

3

21.7 $WBAPRN - concatenate elements of array

Availability
$WBAPRN is available for use with all WBSP commands.

Syntax
$WBAPRN{arrayname|delimiter}
$WBAPRN[arrayname|delimiter]

Parameters

arrayname - the name of the array to search
delimiter - optional parameter - defines the delimiter for array elements. Default
value is comma (,).

Returns

All elements of the array delimited by delimiter.

Example

<!--

[FormFields]

wb_command=R

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBAPrn</title>

</head>

<body>

$wbsplit[Mon,Tue,Wed,Thu,Fri,Sat,Sun|days|,|f]

$wbaprn[days|
]

</body>

</html>

After running this example, the resulting page in browser should look like this:

Mon

Tue
Wed
Thu

Fri
Sat

Sun

21.8 $WBB64DEC - Base64 decode

Availability

$WBB64DEC is available for use with all WBSP commands:

Syntax
$WBB64DEC{Base64EncodedString}
$WBB64DEC[Base64EncodedString]

Parameters

Base64EncodedString - any string encoded using $WBB64ENC
Returns
Decoded value of Base64EncodedString.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBB64DEC example</title>

</head>

<body>

Encoded text: 5N/84g==

WBB64DEC:($WBB64DEC[5N/84g==])

</body>

</html>

After running this example the HTML code of resulting page in browser, may look like
this:

<html>

<head>

<title>WBB64DEC example</title>

</head>

<body>

Encoded text: 5N/84g==

WBB64DEC:(äßüâ)

</body>

</html>

21.9 $WBB64ENC - Base64 encode

Availability

$WBB64ENC is available for use with all WBSP commands:

Syntax
$WBB64ENC{anystring}
$WBB64ENC[anystring]

Parameters

anystring - any textual value that can be either WhizBase tag, function, plain text or
any combination of those

Returns
Base64-encoded value of anystring.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBB64ENC example</title>

</head>

<body>

Original text: äßüâ

WBB64ENC:($WBB64ENC[äßüâ])

</body>

</html>

After running this example the HTML code of resulting page in browser, may look like
this:

<html>

<head>

<title>WBB64ENC example</title>

</head>

<body>

Original text: äßüâ

WBB64ENC:(5N/84g==)

</body>

</html>

21.10 $WBBAND - binary AND

Availability
$WBBAND is available for use with all WBSP commands.

Syntax

$WBBAND{num1|num2}
$WBBAND[num1|num2]

Parameters
num1, num2 - any two numbers in range +/-

79,228,162,514,264,337,593,543,950,335

Returns
A result of bitwise comparison num1 AND num2.

Example

<html>

 <body>

 2 and 6 = $WBBAND[2|6]

 </body>

</html>

Result:

2 and 6 = 2

21.11 $WBBOR - binary OR

Availability
$WBBOR is available for use with all WBSP commands.

Syntax

$WBBOR{num1|num2}
$WBBOR[num1|num2]

Parameters
num1, num2 - any two numbers in range +/-

79,228,162,514,264,337,593,543,950,335

Returns
A result of bitwise comparison num1 OR num2.

Example

<html>

 <body>

 2 or 6 = $WBBOR[2|6]

 </body>

</html>

Result:

2 or 6 = 6

21.12 $WBBXOR - binary XOR

Availability

$WBBXOR is available for use with all WBSP commands.

Syntax
$WBBXOR{num1|num2}
$WBBXOR[num1|num2]

Parameters

num1, num2 - any two numbers in range +/-
79,228,162,514,264,337,593,543,950,335

Returns

A result of bitwise comparison num1 XOR num2.

Example

<html>

 <body>

 2 xor 6 = $WBBXOR[2|6]

 </body>

</html>

Result:

2 xor 6 = 4

21.13 $WBCACHE - cache content

Availability

$WBCACHE is available for use with all WBSP commands.

Syntax
$WBCACHE{code|time|uniqueID}
$WBCACHE[code|time|uniqueID]

Parameters

code - WhizBase code snippet that should be cached
time - period of validity of cached content in seconds
uniqueID - part of code that uniquely identifies the snippet (see example below)

Returns
Cached content if it is not expired (older than specified time) or executed code if it
is.

Example

[FormFields]

WB_basename=biblio.mdb

wb_rcdset=publishers

WB_Command=Q

wb_showlogo=F

wb_order=name

<!--WB_BeginTemplate-->

<html>

<head>

<title>Publishers</title>

</head>

<body bgcolor="#ffffff" leftmargin="0" topmargin="0" marginwidth="0"

marginheight="0">

<!--WB_BeginDetail-->

<span style="font-family:Verdana;font-size:14px;font-

weight:bold;color:#0066cc;">$wbf[Name]

$wbcache[$wbsrq[titles.sr|PubID=$wbf[PubID]]|300|$wbf[PubID]]

<!--WB_EndDetail-->

</body>

</html>

When opened for the first time, this script will run sub report titles.sr and generate
cache for every record. During next 300 seconds, any request for this script will
return cached content, instead of running sub report titles.sr. We used $wbf[PubID]

as unique identifier for cached content, because WhizBase would return the same
cached content for all records if we did not.

21.14 $WBCALC - calculate math expression

Availability
$WBCalc is available for use with all WBSP commands.

Syntax

$WBCalc{mathexp}
$WBCalc[mathexp]

Parameters
mathexp - any valid mathematical expression.

Valid operators are:

Operator Syntax Operation

+ a + b sum of two numbers

- a - b difference between two numbers

- - a negative value of a number

* a * b multiply two numbers

/ a / b a divided by b

\ a \ b integer part of a divided

% a % b the remainder of a division

mod a mod b the remainder of a division (same as %)

Valid mathematical functions are:

Operator Syntax Returns

sin sin(a) the sine of an angle

cos cos(a) the cosine of an angle

tan tan(a) the tangent of an angle

exp exp(a) e (the base of natural logarithms) raised to a power

log log(a) the logarithm to the base 10 of a number

ln ln(a) the natural logarithm of a number

atn atn(a) the arctangent of a number

abs abs(a) the absolute value of a number

sgn sgn(a) the sign of a number

sqr sqr(a) the square root of a number

Returns
The result of a mathematical expression.

Example
<!--

[FormFields]

wb_command=q

wb_basename=biblio.mdb

wb_rcdset=titles

wb_changeHFon=[Year published]

wb_order=[Year published]

wb_maxrec=all

-->

<!--WB_BeginTemplate-->

<html>

<body>

$wbsetv[countbooks|0]

<!--WB_BeginDetail-->

<!--WB_BeginHeader-->

This is the list of titles for year $wbf[year

published]

<!--WB_EndHeader-->

$wbf[title] - $wbf[isbn]

$wbsetv[

countbooks

|

$wbcalc[$wbgetv[countbooks]+1]

]

<!--WB_BeginFooter-->

<hr>

Total books in $wbf[year published]:

$wbgetv[countbooks]<hr>

$wbsetv[countbooks|0]

<!--WB_EndFooter-->

<!--WB_EndDetail-->

</body>

</html>

After running this example, total number of books will be displayed at the bottom of
every year:

This is the list of titles for year 1998
Beginning Visual C++ 6 - 186100088X
Microsoft Internet Information Server 4: the Complete Reference - 0078824575

Total books in 1998: 2

This is the list of titles for year 1999
Beginning Java 2 - 1861002238

Apache Server for Windows Little Black Book: The Indispensable Guide to Day-to-
Day Apache Server Tips and Techniques - 1576103919
Non-Designer's Scan and Print Book, The - 0201353946

Total books in 1999: 3

This is the list of titles for year 2000
Sams Teach Yourself Macromedia Dreamweaver 4 in 24 Hours - 0672320428

HTML 4 for the World Wide Web: Visual Quickstart Guide - 0201354934
InDesign 1.0/1.5 for Macintosh and Windows: Visual QuickStart Guide - 0201710366

Real World Adobe InDesign 1.5 - 0201354780
Sams Teach Yourself Macromedia Dreamweaver 3 in 24 Hours - 0672318830
www.color - 0823058573

Microsoft SMS Installer - 0072124474
www.type: Effective Typographic Design for the World Wide Web - 0823058603
Photoshop 6 Down and Dirty Tricks - 0967985307

Developer's Workshop to COM and ATL 3.0 - 1556227043

Total books in 2000: 10

21.15 $WBCAPTCHA - show text as captcha

Availability
$WBCAPTCHA is available for use with all WBSP commands.

Syntax

$WBCAPTCHA{SourceText|TableBorder|ImageOn|ImageOff|CellWidth|CellColo
r|TableStyle|BorderColor|BackgroundColor}
$WBCAPTCHA[SourceText|TableBorder|ImageOn|ImageOff|CellWidth|CellColo

r|TableStyle|BorderColor|BackgroundColor]

Parameters
SourceText - a string that should be transformed to CAPTCHA
TableBorder - optional parameter - border thickness in pixels

ImageOn - optional parameter - URL of the image that will be placed in cells that
form the character (contain the dot)
ImageOff - optional parameter - URL of the image that will be placed in blank cells

CellWidth - optional parameter - the width of a single cell in pixels

CellColor - optional parameter - the background color for cells that form the

character (contain the dot)
TableStyle - optional parameter - style for tables forming the characters
BorderColor - optional parameter - the color of the border

BackgroundColor - optional parameter - the background color for blank cells

Returns

SourceText transformed into CAPTCHA.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBCaptcha</title>

</head>

<body bgcolor="#ffffff" leftmargin="0" topmargin="0" marginwidth="0"

marginheight="0">

$wbcaptcha[whizbase|1|dot.gif|dot.gif|2|#EE0000|border-

collapse:collapse;|#d0d0d0|#FFFFFF]

</body>

</html>

After running this example, the resulting page in browser, may look like this:

21.16 $WBCASE - select case (switch)

Availability

$WBCASE is available for use with all WBSP commands.

Syntax
$WBCASE{separator|value|conditionlist|resultlist|default}
$WBCASE[separator|value|conditionlist|resultlist|default]

Parameters

separator - a character used to separate elements of conditionlist and resultlist.
Default value is comma (,)
value - value that will be compared

conditionlist - list of conditions in form operator value (e.g. =3,>5,<>7), separated
with separator
resultlist - list of return values for each condition, separated by separator

default - value that will be returned if none of the conditions is true

Returns

Code contained in true part or false part depending on result of evaluated
expression.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

Random number $WBCASE[,|$wbfn[rnd(50)]|

=30,=10,=25,>=40,<10|

is 30,is 10,is 25,is greater or equal to 40, is less than 10|

is neither 10, 25, 30 nor it is greater than 40 or less than 10]

</body>

</html>

After running this example, the resulting page in browser, may look like this:

Random number is greater or equal to 40

Refresh the page few times and watch the changes of the result.

21.17 $WBCID - mail content ID

Availability
$WBCID is available for use with mail-related WBSP commands (P and L):

Syntax

$WBCID{filename}
$WBCID[filename]

Parameters
filename - the name of the file embedded to the mail message (using WB_Embed

variable).

Returns

The CID (content id) value of filename generated during the embedding process.
Please note that filename argument of $WBCID function must be exactly the
same as file name used in the WB_Embed variable.

If you change $wbcid[/poster.jpg] to $wbcid[poster.jpg] in the following example,
the function will not return proper CID even if "/poster.jpg" and "poster.jpg" are both
referencing the same file (e.g. both WBSP file and poster.jpg are located in the

document root).

<!--

[FormFields]

wb_command=P

wb_mailserver=mail.whizbase.com

wb_to=info@whizbase.com

wb_from=info@whizbase.com

wb_subject=Test for WBCid

wb_embed=/poster.jpg,/alphabet.gif

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBCID</title>

</head>

<body>

<table border="0" cellpadding="5" cellspacing="0">

<tr>

<td><img border="0" src="$wbcid[/poster.jpg]" width="320"

height="422"></td>

<td><img border="0" src="$wbcid[/alphabet.gif]" width="300"

height="300"></td>

</tr>

</table>

</body>

</html>

21.18 $WBDCALC - calculate date

Availability
$WBDCALC is available for use with all WBSP commands.

Syntax
$WBDCALC{startdate|offset|interval|operator}
$WBDCALC[startdate|offset|interval|operator]

Parameters

startdate - starting date/time value
offset - number of intervals to be added to or subtracted from startdate
interval - interval of time to be added to or subtracted from startdate

Valid values are:
S - seconds
M - minutes

H - hours
D - days
operator - for addition set operator to + (plus sign), for subtraction set it to - (minus

sign)
Returns
New date value created by adding or subtracting the offset number of intervals

to/from startdate.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Calculate date</title>

</head>

<body>

$wbdcalc[01.03.2009|1|D|-]

$wbdcalc[01.03.2009 00:00:00|3600|S|-]

</body>

</html>

After running this example, the resulting page in browser should look like this:

28.2.2009

28.2.2009 23:00:00

21.19 $WBDIR - list directory

Availability
$WBDIR is available for use with all WBSP commands.

Syntax
$WBDIR{path|file|separator|attributes}

$WBDIR[path|file|separator|attributes]

Parameters
path - directory or folder, and drive if AbsolutePath is enabled. Default value is
current script directory

file - file name or comma-separated list of file names, including multiple-character
(*) and single-character (?) wildcards to specify multiple files. Default value is *.*
separator - the character(s) used to separate files. Default value is comma (,)

attributes - any combination of the following values H-hidden,S-system, D-directory,
F-normal files. Default value is F
Returns

List of path content that matches file pattern and any of the attributes. Empty string
if no files match the file name.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Directory list</title>

</head>

<body>

Directory $wbcurrdir contents:

$WBDIR[$wbcurrdir[]||
|FDSH]

</body>

</html>

After running this example, the resulting page in browser will list all the files and
folders located in same directory as this WBSP file.

21.20 $WBDV - decrement value

Important: $WBDV function has effect on entire WBSP page and all it's sub

elements (configuration section, included files, sub reports, etc.). All instances of
$WBDV function that use the same variable name will set same variable regardless
of their location inside WBSP page (e.g. $WBDV[somevar] in main WBSP page and

$WBDV[somevar] in subreport will change (decrement by 1) the value of the same
variable named somevar.

Availability
$WBDV is available for use with all WBSP commands.

Syntax

$WBDV{varname|decrement|showvar}
$WBDV[varname|decrement|showvar]

Parameters

varname - the name of global WBSP variable to be decremented
decrement - optional parameter - the value that will be subtracted from the
existing value of varname. Default value is 1.

showvar - optional parameter - if set to true (T,ON,1) WhizBase will show the
assigned value

Returns
New (decremented) value if showvar parameter is set to true, otherwise it returns
nothing, just sets the value of a variable.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBDV</title>

</head>

<body>

$WBSETV[loopcounter|10]

$WBWHILE[$wbgetv[loopcounter]>0|

The loopcounter value is:$wbgetv[loopcounter]

$WBDV[loopcounter]

]

Loop ended, loopcounter value is $wbgetv[loopcounter]!

</body>

</html>

After running this example, the resulting page in browser may look like this:

The loopcounter value is:10

The loopcounter value is:9
The loopcounter value is:8
The loopcounter value is:7

The loopcounter value is:6
The loopcounter value is:5
The loopcounter value is:4

The loopcounter value is:3
The loopcounter value is:2
The loopcounter value is:1

Loop ended, loopcounter value is 0!

21.21 $WBE - environment variable

Availability
$WBE is available for use with all WBSP commands.

Syntax
$WBE{envstring}

$WBE[envstring]

Parameters
envstring - string expression containing the name of an environment variable.
Some of the environmental variables generated by most web servers are:

CONTENT_LENGTH, CONTENT_TYPE, HTTP_COOKIE, GATEWAY_INTERFACE,
QUERY_STRING, HTTP_REFERER, REMOTE_ADDR, REMOTE_HOST, REMOTE_IDENT,
REMOTE_USER, REQUEST_METHOD, SCRIPT_NAME, SERVER_SOFTWARE,

SERVER_NAME, SERVER_PORT, SERVER_PROTOCOL, HTTP_USER_AGENT

Returns

The value of an operating system environment variable.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<body>

Your IP address is $WBE[REMOTE_ADDR]!

</body>

</html>

After running this example, visitors IP address will be shown:

Your IP address is 127.0.0.1!

21.22 $WBERR - simulates an error

Availability

$WBERR is available for use with all WBSP commands.

Syntax
$WBERR{errnum|errmsg}
$WBERR[errnum|errmsg]

Parameters

errnum - error number in range from 6000 to 65535
errmsg - optional parameter containing textual description of an error. It should not
be omitted if custom error message is not defined in ErrorMessages section of the

current WBSP file or in include files.

Returns
Nothing.

When processing this function WhizBase will generate an error with specified
number, and process it as any other error (stop the page processing and return an
error report, or perform an error redirection).

Example

[FormFields]

WB_BaseName=biblioA.mdb

WB_AllowMultipart=T

WB_Command=A

WB_Redirect=$wbe[http_referer]$wbif[$wbindof[$wbe[http_referer]|?]>0||?

wb_startrec=$wbv[sr]]

WB_RcdSet=Titles

wb_UserData=$wbif{$wbindof{$wbgv{system.cfg|AppGroups|$wbe{remote_addr}

}|;add record;}>0||$wberr{6001|Sorry!, you do not have the access

rights!}}

[Upload]

WB_Disallow=![jpg,gif]

WB_UploadDir=images/

WB_Overwrite=T

WB_MaxFSize=24576

WB_UploadLog=upload.log

After running this example (together with titleslist.wbsp), any access to this file from
IP address other than 127.0.0.1 will generate an error message:

Error in /wbsp/basic/titlesAdd.wbsp

The following internal error has occurred:
Sorry!, you do not have the access rights!

Error Number = 6001

Please note what you were doing when this problem occurred, so we can identify and
correct it. Write down the Web page you were using, any data you may have entered
into a form or search box, and anything else that may help us duplicate the problem.

Then contact the administrator of this service: <webmaster@officeserver>

21.23 $WBESC - URL encode string

Availability

$WBESC is available for use with all WBSP commands:

Syntax
$WBESC{anystring}
$WBESC[anystring]

Parameters

anystring - any textual value that can be either WhizBase tag, function, plain text or
any combination of those

Returns
url-encoded value of anystring.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBESC example</title>

</head>

<body>

Original text: äßüâ

WBESC:($WBESC[äßüâ])

</body>

</html>

After running this example the HTML code of resulting page in browser, may look like
this:

<html>

<head>

<title>WBESC example</title>

</head>

<body>

Original text: äßüâ

WBESC:(%E4%DF%FC%E2)

</body>

</html>

21.24 $WBFN

Availability
$WBFN is available for use with all WBSP commands.

Syntax
$WBFN{function(argument)}

$WBFN[function(arguments)]

Parameters

function - valid function name (see table below)
argument - optional parameter. Contains valid function argument where needed (see
explanation for each function).

Functions without
arguments

Functions with
arguments

DATE

DAY
HTPASS
HTUSER

MONTH
SECONDS

TIME
USER
USERDATA

WEEKDAYN
WEEKDAYS
YEAR

ASC

BIN
CHR
FDT

HEX
INT

LCS
OCT
RND

SQR
UCS
UTF

Returns
Function result, depending on function used.

Example

<html>

 <body>

 Hello!

 Your IP address is $wbe[REMOTE_ADDR].

 Today is $wbfn[weekdays], $wbfn[fdt(dd-mmm-yyyy)].

 </body>

</html>

Result:

Hello! Your IP address is 127.0.0.1.

Today is Monday, 14-Apr-2008.

21.24.1 ASC - character's ASCII code

Availability
ASC is available for use with all WBSP commands.

Syntax

$WBFN{ASC(character)}
$WBFN[ASC(character)]

Arguments

character - any ASCII character.

Returns
An ASCII code of the character passed as an argument.

Example

<html>

<body>

ASCII code of letter A is $wbfn[asc(A)]!

</body>

</html>

Result

ASCII code of letter A is 65!

21.24.2 BIN - convert decimal number to binary

Availability
BIN is available for use with all WBSP commands.

Syntax
$WBFN{BIN(decnumber)}

$WBFN[BIN(decnumber)]

Arguments
decnumber - any integer in range 0 to 2147483647.

Returns

A string representing the binary value of the number passed as an argument.

Example

<html>

<body>

Binary value of letter A is $wbfn[bin(65)]!

</body>

</html>

Result

Binary value of letter A is 1000001!

21.24.3 CHR - print character with specified ASCII code

Availability
CHR is available for use with all WBSP commands.

Syntax
$WBFN{CHR(decnumber)}

$WBFN[CHR(decnumber)]

Arguments
decnumber - any integer in range 0 to 255.

Returns

A character with ASCII code decnumber.

Example

<html>

<body>

Character with ASCII code 65 is $wbfn[chr(65)]!

</body>

</html>

Result

Character with ASCII code 65 is A!

21.24.4 DATE - current system date

Availability
DATE is available for use with all WBSP commands.

Syntax
$WBFN{DATE}

$WBFN[DATE]

Arguments
DATE function does not have any arguments.

Returns

Current server date in short date format depending on server’s regional settings.

21.24.5 DAY - current day of the month

Availability
DAY is available for use with all WBSP commands.

Syntax
$WBFN{DAY}

$WBFN[DAY]

Arguments
DAY function does not have any arguments.

Returns
A whole number between 1 and 31, inclusive, representing the day of the month for
current server date.

21.24.6 FDT - date and time in specified format

Availability

FDT is available for use with all WBSP commands.

Syntax
$WBFN{FDT(formatstring)}
$WBFN[FDT(formatstring)]

Arguments

formatstring - any valid named or user-defined format string.

Returns
Current server date or time (depending on value of formatstring argument)

formatted using formatstring.

Example

<html>

<body>

Today is $wbfn[fdt(dd-mmmm-yyyy)]!

</body>

</html>

Result

Today is 07-july-2008!

21.24.7 HEX - convert decimal number to hexadecimal

Availability

HEX is available for use with all WBSP commands.

Syntax
$WBFN{HEX(decnumber)}
$WBFN[HEX(decnumber)]

Arguments

decnumber - any integer in range 0 to 2147483647.

Returns
A string representing the hexadecimal value of the number passed as an argument.

Example

<html>

<body>

Hexadecimal value of ASCII code for letter A is $wbfn[HEX(65)]!

</body>

</html>

Result

Hexadecimal value of ASCII code of letter A is 41!

21.24.8 HTPASS - password used for authentication

Availability
HTPASS is available for use with all WBSP commands when authentication is used.

Syntax
$WBFN{HTPASS}

$WBFN[HTPASS]

Arguments
HTPASS function does not have any arguments.

Returns

Password used for authentication (WB_HTPass).

21.24.9 HTUSER - user name used for authentication

Availability
HTUSER is available for use with all WBSP commands when authentication is used.

Syntax
$WBFN{HTUSER}

$WBFN[HTUSER]

Arguments

HTUSER function does not have any arguments.

Returns
User name used for authentication (WB_HTUsr).

21.24.10 INT - integer portion of number

Availability

INT is available for use with all WBSP commands.

Syntax
$WBFN{INT(decnumber)}
$WBFN[INT(decnumber)]

Arguments
decnumber - any decimal number.

Returns

The integer portion of the number passed as an argument.

Example

<html>

<body>

Integer part of timer is $wbfn[INT($wbtimer[])]!

</body>

</html>

Result

Integer part of timer is 53021!

21.24.11 LCS - to lowercase

Availability
LCS is available for use with all WBSP commands.

Syntax
$WBFN{LCS(anystring)}

$WBFN[LCS(anystring)]

Arguments
anystring - any string value.

Returns

The string passed as an argument converted to lowercase characters.

Example

<html>

<body>

Lowercase of Hello World is $wbfn[LCS(Hello World)]!

</body>

</html>

Result

Lowercase of Hello World is hello world!

21.24.12 MONTH - current month

Availability
MONTH is available for use with all WBSP commands.

Syntax
$WBFN{MONTH}

$WBFN[MONTH]

Arguments
MONTH function does not have any arguments.

Returns

A whole number between 1 and 12, inclusive, representing the month of the year for
current server date.

21.24.13 OCT - convert decimal number to octal

Availability
OCT is available for use with all WBSP commands.

Syntax

$WBFN{OCT(decnumber)}
$WBFN[OCT(decnumber)]

Arguments
decnumber - any integer in range 0 to 2147483647.

Returns
A string representing the octal value of the number passed as an argument.

Example

<html>

<body>

Octal value of letter A is $wbfn[OCT(65)]!

</body>

</html>

Result

Octal value of letter A is 101!

21.24.14 RND - random number

Availability

RND is available for use with all WBSP commands.

Syntax
$WBFN{RND(decnumber)}
$WBFN[RND(decnumber)]

Arguments

decnumber - any integer in range 1 to 2147483647.

Returns
The randomly generated number in range from 1 to the number passed as an

argument.

Example

<html>

<body>

Random number:$wbfn[RND(1000)]!

</body>

</html>

Result

Random number:351!

21.24.15 SECONDS - seconds elapsed since midnight

Availability
SECONDS is available for use with all WBSP commands.

Syntax

$WBFN{SECONDS}
$WBFN[SECONDS]

Arguments
SECONDS function does not have any arguments.

Returns
A single-precision number representing the number of seconds elapsed since
midnight (server time).

21.24.16 SQR - square root

Availability

SQR is available for use with all WBSP commands.

Syntax
$WBFN{SQR(decnumber)}
$WBFN[SQR(decnumber)]

Arguments

decnumber - any number in range from 0 to 2147483647.

Returns
The square root of the number passed as an argument.

Example

<html>

<body>

Square root of number 3.0625 is $wbfn[SQR(3.0625)]!

</body>

</html>

Result

Square root of number 3.0625 is 1.75!

21.24.17 TIME - current system time

Availability
TIME is available for use with all WBSP commands.

Syntax
$WBFN{TIME}

$WBFN[TIME]

Arguments
TIME function does not have any arguments.

Returns

Current server time in short format depending on server’s regional settings.

21.24.18 UCS - to uppercase

Availability
UCS is available for use with all WBSP commands.

Syntax
$WBFN{UCS(anystring)}

$WBFN[UCS(anystring)]

Arguments

anystring - any string value.

Returns
The string passed as an argument converted to uppercase characters.

Example

<html>

<body>

Uppercase of Hello World is $wbfn[UCS(Hello World)]!

</body>

</html>

Result

Uppercase of Hello World is HELLO WORLD!

21.24.19 UNI - convert UTF-8 text to Unicode

Availability
UTF is available for use with all WBSP commands.

Syntax
$WBFN{UNI(UTF-8 string)}

$WBFN[UNI(UTF-8 string)]

Arguments
UTF-8 string - any string value in UTF-8 format.

Returns

The string passed as an argument converted to Unicode charset.

Example

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

</head>

<body>

This is original character in UTF-8 format:Ăź

This is a converted character $wbfn[UNI(Ăź)]!

</body>

</html>

Result

This is original character in UTF-8 format: ß

This is a converted character: �!

21.24.20 USER - current database user name

Availability

USER is available for use with database related WBSP commands.

Syntax
$WBFN{USER}
$WBFN[USER]

Arguments

USER function does not have any arguments.

Returns
User name used to connect to the database.

21.24.21 USERDATA - retrieve value of WB_UserData

Availability
USERDATA is available for use with all WBSP commands when WB_UserData variable
is defined.

Syntax

$WBFN{USERDATA}
$WBFN[USERDATA]

Arguments
USERDATA function does not have any arguments.

Returns
A processed value of WBSP system variable WB_UserData.

21.24.22 UTF - covert text to UTF-8

Availability
UTF is available for use with all WBSP commands.

Syntax

$WBFN{UTF(anystring)}
$WBFN[UTF(anystring)]

Arguments
anystring - any string value.

Returns
The string passed as an argument converted to UTF-8 charset.

Example

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

</head>

<body>

This is original character:ß

This is a converted character $wbfn[UTF(ß)]!

</body>

</html>

Result

This is original character:

This is a converted character: ß!

21.24.23 WEEKDAYN - day of the week (numeric value)

Availability

WEEKDAYN is available for use with all WBSP commands.

Syntax
$WBFN{WEEKDAYN}

$WBFN[WEEKDAYN]

Arguments
WEEKDAYN function does not have any arguments.

Returns

A whole number between 1 and 7, inclusive, representing the day of the week
starting with Sunday (Sunday=1, Saturday=7) for current server date.

21.24.24 WEEKDAYS - day of the week (string value)

Availability
WEEKDAYS is available for use with all WBSP commands.

Syntax

$WBFN{WEEKDAYS}
$WBFN[WEEKDAYS]

Arguments
WEEKDAYS function does not have any arguments.

Returns
The name of the day of the week in English, for current server date.

21.24.25 YEAR - current year

Availability

YEAR is available for use with all WBSP commands.

Syntax
$WBFN{YEAR}
$WBFN[YEAR]

Arguments

YEAR function does not have any arguments.

Returns
A whole number representing the year for current server date.

21.25 $WBFOR - unconditional (for...next) loop

Availability
$WBFOR is available for use with all WBSP commands.

Syntax
$WBFOR{VarName|Start|End|Step|Content}

$WBFOR[VarName|Start|End|Step|Content]

Parameters
VarName - the name of the variable used as a loop counter. The variable can be
accessed using $WBGETV function (see the example)

Start - initial value of loop counter.
End - final value of loop counter.
Step - optional parameter - amount counter is changed each time through the loop.

It can be either positive (when start < end) or negative (when start > end). If not
specified, step defaults to 1 (one).
Content - block of code (including WhizBase elements) that will be repeated through

the loop

Returns

Code contained in content repeated through the loop.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

 <title>WBFOR</title>

</head>

<body>

$WBFOR[LCnt|20|2|-2|Counter value: $wbgetv[LCnt]
]

</body>

</html>

After running this example, the resulting page in browser, should look like this:

Counter value: 20

Counter value: 18
Counter value: 16
Counter value: 14

Counter value: 12
Counter value: 10
Counter value: 8

Counter value: 6
Counter value: 4

Counter value: 2

21.26 $WBFOREACH - loop through array elements

Availability

$WBFOREACH is available for use with all WBSP commands.

Syntax
$WBFOREACH{VarName|ArrayName|Content}
$WBFOREACH[VarName|ArrayName|Content]

Parameters

VarName - the name of the variable used to iterate through the elements of the
ArrayName . The variable can be accessed using $WBGETV function (see the
example)

ArrayName- the name of an array.
Content - block of code (including WhizBase elements) that will be repeated through
the loop

Returns
Code contained in content repeated through the loop.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

 <title>WBFOREACH</title>

</head>

<body>

$WBSPLIT[Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday|Days|

,]

$wbforeach[Day|Days|$wbfn[ucs($wbgetv[Day])]
]

</body>

</html>

After running this example, the resulting page in browser, should look like this:

MONDAY

TUESDAY
WEDNESDAY
THURSDAY

FRIDAY
SATURDAY

SUNDAY

21.27 $WBFSIZE - file size

Availability

$WBFSIZE is available for use with all WBSP commands.

Syntax
$WBFSIZE{filename}
$WBFSIZE[filename]

Parameters

filename - any valid file name respecting WhizBase path rules

Returns

The size of requested file in bytes.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>File Size</title>

</head>

<body>

This file contains $wbfsize[$wbe[script_name]] bytes of code.

</body>

</html>

After running this example, the resulting page in browser should look like this:

This file contains 203 bytes of code.

21.28 $WBFTIME - file time

Availability
$WBFTIME is available for use with all WBSP commands.

Syntax

$WBFTIME{filename}
$WBFTIME[filename]

Parameters

filename - any valid file name respecting WhizBase path rules

Returns

Time stamp of requested file

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>File date and time</title>

</head>

<body>

This file was last modified at $WBFTIME[$wbe[script_name]].

</body>

</html>

After running this example, the resulting page in browser should contain the date
and time when a file was created or last modified.

21.29 $WBFUP - bytes uploaded

Availability

$WBFUP is available for use with all WBSP commands.

Syntax
$WBFUP{FULID}
$WBFUP[FULID]

Parameters

FULID - server-side generated unique form upload ID generated using WB_FULID
variable and retrieved with $WBFULID tag.

Returns
Number of bytes that already have been uploaded by form identified with FULID.

Here's an example:

[FormFields]

wb_command=r

wb_showlogo=f

<!--WB_BeginTemplate-->

<html>

<head>

<meta http-equiv="refresh" content="1">

</head>

<body>

Uploaded:

$wbformat[$wbcalc[$wbfup[$wbv[fid]]/$wbfut[$wbv[fid]]*100]|0.00] %

</body>

</html>

After running this example (together with upload.wbsp file that can be found here),
WhizBase will display the upload progress.

21.30 $WBFUT - bytes total

Availability

$WBFUT is available for use with all WBSP commands.

Syntax
$WBFUT{FULID}
$WBFUT[FULID]

Parameters

FULID - server-side generated unique form upload ID generated using WB_FULID
variable and retrieved with $WBFULID tag.

Returns
Total bytes that should be uploaded by form identified with FULID.

Here's an example:

[FormFields]

wb_command=r

wb_showlogo=f

<!--WB_BeginTemplate-->

<html>

<head>

<meta http-equiv="refresh" content="1">

</head>

<body>

Uploaded:

$wbformat[$wbcalc[$wbfup[$wbv[fid]]/$wbfut[$wbv[fid]]*100]|0.00] %

</body>

</html>

After running this example (together with upload.wbsp file that can be found here),

WhizBase will display the upload progress.

21.31 $WBGETATOM - get Atom feed

Availability
$WBGETATOM is available for use with all WBSP commands.

Syntax
$WBGETATOM{URL|ArrName|limit|show}

$WBGETATOM[URL|ArrName|limit|show]

Parameters
URL - The Internet address of the Atom feed you want to include in your page. It can
be either absolute (containing entire address including protocol, server, path and

resource) or relative (to document root of virtual server if it starts with slash /

character, or to the directory where the WBSP file is located).

ArrName - name that will be used as prefix for all variables where Atom feed content
will be stored.
limit - optional parameter. Contains the number of items to be included in arrays

show - optional parameter - if set to true (T,ON,1) WhizBase will show the last index
(length-1) of resulting array

Returns
Set of five (5) arrays:
ArrName_title() - containing values of all <title> nodes

ArrName_summary() - containing values of all <summary> nodes
ArrName_updated() - containing values of all <updated> nodes

ArrName_content() - containing values of all <content> nodes
ArrName_link - set of four (4) sub arrays:
ArrName_link_replies() - containing values of all <link> nodes with rel atribute set to

"replies"
ArrName_link_edit() - containing values of all <link> nodes with rel atribute set to
"edit"

ArrName_link_self() - containing values of all <link> nodes with rel atribute set to
"self" or empty ("")
ArrName_link_alternate() - containing values of all <link> nodes with rel atribute set

to "alternate"

Example

[FormFields]

wb_command=R

<!--WB_BeginTemplate-->

<html>

<head>

 <title>Atom</title>

</head>

<body>

$wbsetv[lastAtom|$wbgetatom[http://www.blogger.com/feeds/64695940303292

84280/posts/default|AtomFeed|5|T]]

$wbsetv[loopcounter|0]

$WBWHILE[$wbgetv[loopcounter]<=$wbgetv[lastAtom]|

$wbgetv[AtomFeed_Title($wbgetv[loopcounter])]

$wbgetv[AtomFeed_Updated($wbgetv[loopcounter])]

$wbsetv[loopcounter|$wbcalc[$wbgetv[loopcounter]+1]]

]

</body>

</html>

After running this example (retrieving posts from blog.whizbase.com), the resulting
page in browser may look like this:

Sending an email with embedded images using WhizBase 2011-08-
11T11:39:48.072+02:00
How to collect data from web visitors and save them in your database 2011-05-

25T09:53:37.552+02:00
Whiz your database to the web, now as a SaaS! 2011-05-18T14:57:12.996+02:00
Create an AJAX supported registration form with WhizBase 2011-03-

30T10:43:08.184+02:00

Whizbase fast tutorial 2011-03-23T11:40:35.143+01:00

21.32 $WBGC - get cookie

Availability

$WBGC is available for use with all WBSP commands.

Syntax
$WBGC{cookiename}
$WBGC[cookiename]

Parameters

cookiename - name of the cookie

Returns
Value of the HTTP cookie specified with cookiename.

Example

File GetCookies.wbsp

[FormFields]

wb_command=R

wb_showlogo=F

<!--WB_BeginTemplate-->

<html>

<head>
<LINK$wbgc[css]"=""|style1.css|$wbgc[css]]" type=text/css

rel=stylesheet>

<title>Cookie test</title>

</head>

<body>

Cookievalue:($wbgc[css])

<ahref= "setcookie.wbsp?css=

style1.css">Style1

<a>Style 2

</body>

</html>

File SetCookie.wbsp

[FormFields]

wb_command=R

wb_redirect=$wbe[http_referer]

wb_addcookie=CSS=$wbv{CSS}

File style1.css

body{

font-family:Verdana;

font-size:12px;

color:#333333;

background-color:#efefef;

}

a{

text-decoration:none;

color:#0065b7;

font-weight:bold;

}

a:hover{

color:#cc0000;

}

File style2.css

body{

font-family:Verdana;

font-size:12px;

color:#0000cc;

background-color:#ffffff;

}

a{

text-decoration:none;

color:#6500b7;

font-weight:bold;

}

a:hover{

color:#00cc00;

}

After running this example (file getcookies.wbsp) the page will change its
appearance depending on value of cookie named CSS (changed by clicking on links

"Style 1" and "Style 2").

21.33 $WBGETRSS - get RSS feed

Availability
$WBGETRSS is available for use with all WBSP commands.

Syntax
$WBGETRSS{URL|ArrName|limit|show}

$WBGETRSS[URL|ArrName|limit|show]

Parameters
URL - The Internet address of the RSS feed you want to include in your page. It can
be either absolute (containing entire address including protocol, server, path and

resource) or relative (to document root of virtual server if it starts with slash /
character, or to the directory where the WBSP file is located).
ArrName - name that will be used as prefix for all variables where RSS feed content

will be stored.
limit - optional parameter. Contains the number of items to be included in arrays
show - optional parameter - if set to true (T,ON,1) WhizBase will show the last index

(length-1) of resulting array

Returns

Set of four (4) arrays:
ArrName_title() - containing values of all <title> nodes
ArrName_link() - containing values of all <link> nodes

ArrName_description() - containing values of all <description> nodes
ArrName_pubdate() - containing values of all <pubDate> nodes

Example

[FormFields]

wb_command=R

<!--WB_BeginTemplate-->

<html>

<head>

 <title>RSS</title>

</head>

<body>

$wbsetv[lastRSS|$wbgetrss[rss.xml|RssFeed|5|T]]

$wbsetv[loopcounter|0]

$WBWHILE[$wbgetv[loopcounter]<=$wbgetv[lastRSS]|

$wbgetv[RssFeed_Title($wbgetv[loopcounter])]

$wbgetv[RssFeed_pubdate($wbgetv[loopcounter])]

$wbsetv[loopcounter|$wbcalc[$wbgetv[loopcounter]+1]]

]

</body>

</html>

After running this example, the resulting page in browser may look like this:

18.12.2009 - Version 5.0.15 released 18.12.2009 20:30:00 CET
22.09.2009 - Version 5.0.14 released 22.09.2009 14:34:58 CET

15.07.2009 - Version 5.0.13 released 15.07.2009 12:16:44 CET
08.07.2009 - PowerPack Wizards version 1.0.3 released 08.07.2009 10:11:43 CET

07.07.2009 - Version 5.0.12 released 07.07.2009 14:50:00 CET

21.34 $WBGETURL - get data from URL (GET method)

Availability

$WBGETURL is available for use with all WBSP commands.

Syntax
$WBGETURL{URL|FullPage}
$WBGETURL[URL|FullPage]

Parameters

URL - The Internet address of the resource (page, file) you want to include in your
page. It can be either absolute (containing entire address including protocol, server,
path and resource) or relative (to document root of virtual server if it starts with

slash / character, or to the directory where the WBSP file is located).
FullPage - optional parameter. If set to true (T) function will return entire page code
without truncating code outside <body> and </body> tags.

Returns

Source code of the received page/file. If source code contains <body> and </body>
tags and FullPage is not set to true, function will include only the source code

between these tags.

Example
File GetCookiesA.wbsp

[FormFields]

<!--WB_BeginTemplate-->

<html>

<head>

<LINK $wbgc[css]"=""

|

$wbif["$wbrv[style]"=""|style1.css|$wbrv[style]]

|

$wbif["$wbv[css]"=""|style1.css|$wbgeturl[changecss.wbsp?css=$wbv[css]]

]

]" type=text/css rel=stylesheet>

<title>Cookie test</title>

</head>

<body>

Cookie value:($wbgc[css])

Variablevalue:($wbrv[style])

<a >Style1

<a>Style

2

</body>

</html>

File SetCookieA.wbsp

[FormFields]

wb_command=R

wb_redirect=http://$wbe[server_name]$wbv[sp]?css=$wbv[css]

wb_addcookie=CSS=$wbv{CSS}

File ChangeCss.wbsp

<!--

[FormFields]

wb_filename=/default.inc

wb_command=wf

wb_keyname=Style

wb_keyvalue=$wbv{css}

wb_section=Userdata

-->

<!--WB_BeginTemplate-->$wbv[css]

File style1.css

body{

font-family:Verdana;

font-size:12px;

color:#333333;

background-color:#efefef;

}

a{

text-decoration:none;

color:#0065b7;

font-weight:bold;

}

a:hover{

color:#cc0000;

}

File style2.css

body{

font-family:Verdana;

font-size:12px;

color:#0000cc;

background-color:#ffffff;

}

a{

text-decoration:none;

color:#6500b7;

font-weight:bold;

}

a:hover{

color:#00cc00;

}

After running this example (file getcookiesa.wbsp) the page will change its
appearance depending on value of cookie named CSS (if it exists) or depending on a
value of user defined variable Style in file /default.inc, or if neither of those two

exists, it will use file style1.css. When you click the either of links ("Style 1" and
"Style 2") it will set the cookie to selected value, call the file changecss.wbsp (with
selected value as parameter named CSS) using $WBGETURL function, and write new

value to file /default.inc as user-defined variable "Style".

21.35 $WBGETV - get value of WB variable or array element

Availability
$WBGETV is available for use with all WBSP commands.

Syntax
$WBGETV{varname}

$WBGETV[varname]

Parameters
varname - the name of the variable

Returns
Value of requested WBSP variable

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

$WBSETV[loopcounter|0]

$WBWHILE[$wbgetv[loopcounter]<=10|

The loopcounter value is:$wbgetv[loopcounter]

$WBSETV[loopcounter|$wbcalc[$wbgetv[loopcounter]+1]]

]

Loop ended, loopcounter value is $wbgetv[loopcounter]!

</body>

</html>

After running this example, the resulting page in browser, may look like this:

The loopcounter value is:0
The loopcounter value is:1

The loopcounter value is:2
The loopcounter value is:3
The loopcounter value is:4

The loopcounter value is:5
The loopcounter value is:6
The loopcounter value is:7

The loopcounter value is:8
The loopcounter value is:9
The loopcounter value is:10

Loop ended, loopcounter value is 11!

21.36 $WBGETXML - get XML

Availability
$WBGETXML is available for use with all WBSP commands.

Syntax
$WBGETXML{Source|ArrName|NodeName|limit|show}

$WBGETXML[Source|ArrName|NodeName|limit|show]

Parameters
Source - Either Internet address of the XML file you want to include in your page
(URL) or a string value containing XML code. URL can be either absolute (containing

entire address including protocol, server, path and resource) or relative (to
document root of virtual server if it starts with slash / character, or to the directory
where the WBSP file is located). XML source code must start with "<?xml" (without

quotations)
ArrName - name that will be used as prefix for all variables where XML node
values will be stored.

NodeName - Name of the parent node for which all child nodes will be retrieved
limit - optional parameter. Contains the number of items to be included in arrays
show - optional parameter - if set to true (T,ON,1) WhizBase will show the last index

(length-1) of resulting array

Returns

Set of arrays containing values of all child nodes of NodeName of as well as array
containing all the parent node (NodeName) values (all child nodes in one line

separated by space). Arrays are named following this convention:
ArrName_NodeName() and ArrName_NodeName_ChildNodeName(). See the
example.

Example

[FormFields]

wb_command=R

<!--WB_BeginTemplate-->

<html>

<head>

 <title>GetXML</title>

</head>

<body>

$wbsetv[xmlcnt|$wbgetxml[XMLSample.xml|conditions|condition|5|T]]

$wbsetv[loopcounter|0]

$WBWHILE[$wbgetv[loopcounter]<=$wbgetv[xmlcnt]|

No.: $wbgetv[loopcounter]

Condition (full parent node):

$wbgetv[conditions_condition($wbgetv[loopcounter])]

Code: $wbgetv[conditions_condition_code($wbgetv[loopcounter])]

Day_Icon:

$wbgetv[conditions_condition_day_icon($wbgetv[loopcounter])]

Night_Icon:

$wbgetv[conditions_condition_night_icon($wbgetv[loopcounter])]

Description:

$wbgetv[conditions_condition_description($wbgetv[loopcounter])]

$wbsetv[loopcounter|$wbcalc[$wbgetv[loopcounter]+1]]

]

</body>

</html>

File XMLSample.xml

<?xml version="1.0" encoding="UTF-8"?>

<codes>

 <condition>

 <code>XXX</code>

 <description>XXX description</description>

 <day_icon>XXXDayIcon.png</day_icon>

 <night_icon>XXXNightIcon.png</night_icon>

 </condition>

 <condition>

 <code>YYY</code>

 <description>YYY description</description>

 <day_icon>DayYYYIcon.png</day_icon>

 <night_icon>NightYYYIcon.png</night_icon>

 </condition>

 <condition>

 <code>ZZZ</code>

 <description>ZZZ description</description>

 <day_icon>DayIconZZZ.png</day_icon>

 <night_icon>NightIconZZZ.png</night_icon>

 </condition>

</codes>

After running this example, the resulting page in browser should look like this:

No.: 0

Condition (full parent node): XXX XXX description XXXDayIcon.png
XXXNightIcon.png
Code: XXX

Day_Icon: XXXDayIcon.png
Night_Icon: XXXNightIcon.png
Description: XXX description

No.: 1
Condition (full parent node): YYY YYY description DayYYYIcon.png
NightYYYIcon.png

Code: YYY
Day_Icon: DayYYYIcon.png
Night_Icon: NightYYYIcon.png

Description: YYY description
No.: 2
Condition (full parent node): ZZZ ZZZ description DayIconZZZ.png

NightIconZZZ.png
Code: ZZZ
Day_Icon: DayIconZZZ.png

Night_Icon: NightIconZZZ.png

Description: ZZZ description

21.37 $WBIF - conditionally execute statements

Availability
$WBIF is available for use with all WBSP commands.

Syntax

$WBIF{expression|true part|false part}
$WBIF[expression|true part|false part]

Parameters
expression - expression you want to evaluate. If it contains more conditions

connected with keyword AND or keyword OR, single condition has to be enclosed in
brackets - (condition 1) or (condition 2)

true part - value that will be returned if expression is True
false part - value that will be returned if expression is False

Returns
Code contained in true part or false part depending on result of evaluated
expression.

Example

[FormFields]

WB_basename=biblio.mdb

wb_rcdset=titles

wb_command=Q

wb_maxrec=5

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

<table border="1" cellspacing="0">

<tr>

<td>Year published</td>

<td>Title</td>

<td>ISBN</td>

</tr>

<!--WB_BeginDetail-->

<tr

bgcolor="#$wbif[$wbcalc[$wbp[rn]/2]=$wbcalc[$wbp[rn]\2]|c0c0c0|ff6699]"

>

<td>$wbf[Year published]</td>

<td>$wbf[title]</td>

<td>$wbf[ISBN]</td>

</tr>

<!--WB_EndDetail-->

</table>

</body>

</html>

After running this example, the resulting page in browser, may look like this:

Year

published
Title ISBN

2001
McGraw-Hill's Encyclopedia of Networking &
Telecommunications

0072120053

2000 Microsoft SMS Installer 0072124474

2001 Windows 2000 Iis 5.0 : A Beginner's Guide 0072133724

1996 Windows Nt Security Handbook 0078822408

1998
Microsoft Internet Information Server 4: the Complete
Reference

0078824575

21.38 $WBINC - include file

Important: $WBINC function is processed before any other function, tag or section.
Therefore it can not accept other WhizBase functions as arguments, nor it can be

used as an argument for other WhizBase functions. For situations where it is required
(e.g. to use Whizbase functions in a file name, or to use include file as a part of
$WBIF or $WBCASE functions, etc.) use $WBRINC.

Availability

$WBINC is available for use with all WBSP commands.

Syntax
$WBINC{includefilename}
$WBINC[includefilename]

Parameters

includefilename - full path and file name of the file that should be included. Included
file can contain <!--WB_BeginDetail--> and <!--WB_EndDetail--> comments.

Returns
Source code of the file includefilename. If source code contains <body> and
</body> tags, function will include only the source code between these tags.

Example

[FormFields]

wb_command=R

wb_showlogo=F

<!--WB_BeginTemplate-->

<html>

<body>

$WBINC[menu.ic]

</body>

</html>

File menu.ic

<html>

<body>

<a >Link 1

<a >Link 2

</body>

</html>

After running this example, the resulting page in web browser may look like this:

Link 1

Link 2

21.39 $WBIRUN - execute inline script

Important: $WBIRUN function uses safe subset which means that scripting
engine is only allowed to create or use objects that are marked safe for scripting. In
order to start this function WBSP file must have WB_AllowInlineFunc set to TRUE.

Availability
$WBIRUN is available for use with all WBSP commands in scripting languages listed
in Execute variable of WBSP.ssc file.

Syntax

$WBIRUN{Language|function(fnargs)|ScriptCode}
$WBIRUN[Language|function(fnargs)|ScriptCode]

Parameters
language - name of the scripting language used in script (e.g. JavaScript, VBScript,

JScript, etc.)
function - name of the function that should be executed - fnargs are arguments
required by the script function, not by the WBSP

scriptcode - actual script code that should be executed

Returns

Result returned by script function.

Example

[FormFields]

wb_command=R

wb_showlogo=F

wb_allowinlinefunc=T

<!--WB_BeginTemplate-->

<html>

<body>

This server uses $wbirun[VBScript|GetScriptEngineInfo|

Function GetScriptEngineInfo

 s = ""

 s = ScriptEngine & " Version "

 s = s & ScriptEngineMajorVersion & "."

 s = s & ScriptEngineMinorVersion & "."

 s = s & ScriptEngineBuildVersion

 GetScriptEngineInfo = s

End Function

]

</body>

</html>

After running this example, the resulting page in web browser may look like this:

This server uses VBScript Version 5.8.16990

21.40 $WBIV - increment value

Important: $WBIV function has effect on entire WBSP page and all it's sub elements
(configuration section, included files, sub reports, etc.). All instances of $WBIV
function that use the same variable name will set same variable regardless of their

location inside WBSP page (e.g. $WBIV[somevar] in main WBSP page and
$WBIV[somevar] in subreport will change (increment by 1) the value of the same
variable named somevar.

Availability

$WBIV is available for use with all WBSP commands.

Syntax
$WBIV{varname|increment|showvar}
$WBIV[varname|increment|showvar]

Parameters

varname - the name of global WBSP variable to be incremented
increment - optional parameter - the value that will be added to the existing value
of varname. Default value is 1.

showvar - optional parameter - if set to true (T,ON,1) WhizBase will show the
assigned value

Returns

New (incremented) value if showvar parameter is set to true, otherwise it returns
nothing, just sets the value of a variable.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBIV</title>

</head>

<body>

$WBSETV[loopcounter|0]

$WBWHILE[$wbgetv[loopcounter]<=10|

The loopcounter value is:$wbgetv[loopcounter]

$WBIV[loopcounter]

]

Loop ended, loopcounter value is $wbgetv[loopcounter]!

</body>

</html>

After running this example, the resulting page in browser may look like this:

The loopcounter value is:0
The loopcounter value is:1

The loopcounter value is:2
The loopcounter value is:3
The loopcounter value is:4

The loopcounter value is:5
The loopcounter value is:6
The loopcounter value is:7

The loopcounter value is:8
The loopcounter value is:9
The loopcounter value is:10

Loop ended, loopcounter value is 11!

21.41 $WBJSON - get value of JSON object

Availability
$WBJSON is available for use with all WBSP commands.

Syntax
$WBJSON{JSONSource|JSONObjectName}

$WBJSON[JSONSource|JSONObjectName]

Parameters
JSONSource - String value containing JSON to be searched. Note that this is not an
URL of the JSON file but JSON source itself.

JSONObjectName - Any valid object in given JSON code including array elements.
When accessing array elements use brackets () instead of square brackets []. Note

that JSON object names are case sensitive.

Returns

Value of JSONObjectName.

Example

[FormFields]

wb_command=R

<!--WB_BeginTemplate-->

<html>

<head>

 <title>WBJSON</title>

</head>

<body>

$wbsetv[JSON|$wbrinc[sample.json]]

Glossary title: $wbjson[$wbgetv[json]|glossary.title]

See also:

$wbjson[$wbgetv[json]|glossary.GlossDiv.GlossList.GlossEntry.GlossDef.G

lossSeeAlso(0)],

$wbjson[$wbgetv[json]|glossary.GlossDiv.GlossList.GlossEntry.GlossDef.G

lossSeeAlso(1)]

</body>

</html>

File Sample.json

{

 "glossary":

 {

 "title": "example glossary",

 "GlossDiv":

 {

 "title": "S",

 "GlossList":

 {

 "GlossEntry":

 {

 "ID": "SGML",

 "SortAs": "SGML",

 "GlossTerm": "Standard Generalized Markup Language",

 "Acronym": "SGML",

 "Abbrev": "ISO 8879:1986",

 "GlossDef":

 {

 "para": "A meta-markup language, used to create markup

languages such as DocBook.",

 "GlossSeeAlso": ["GML", "XML"]

 },

 "GlossSee": "markup"

 }

 }

 }

 }

}

After running this example, the resulting page in browser should look like this:

Glossary title: example glossary

See also: GML, XML

21.42 $WBJSONELEM - get element names of JSON object

Availability
$WBJSONELEM is available for use with all WBSP commands.

Syntax
$WBJSONELEM{JSONSource|JSONObjectName}

$WBJSONELEM[JSONSource|JSONObjectName]

Parameters
JSONSource - String value containing JSON to be searched. Note that this is not an
URL of the JSON file but JSON source itself.

JSONObjectName - Any valid object in given JSON code including array elements.
When accessing array elements use brackets () instead of square brackets []. Note
that JSON object names are case sensitive.

Returns

Comma-separated list of element names of JSONObjectName.

Example

[FormFields]

wb_command=R

<!--WB_BeginTemplate-->

<html>

<head>

 <title>WBJSONELEM</title>

</head>

<body>

$wbsetv[JSON|$wbrinc[sample.json]]

Elements of GlossEntry:

$wbjsonelem[$wbgetv[json]|glossary.GlossDiv.GlossList.GlossEntry]

</body>

</html>

File Sample.json

{

 "glossary":

 {

 "title": "example glossary",

 "GlossDiv":

 {

 "title": "S",

 "GlossList":

 {

 "GlossEntry":

 {

 "ID": "SGML",

 "SortAs": "SGML",

 "GlossTerm": "Standard Generalized Markup Language",

 "Acronym": "SGML",

 "Abbrev": "ISO 8879:1986",

 "GlossDef":

 {

 "para": "A meta-markup language, used to create markup

languages such as DocBook.",

 "GlossSeeAlso": ["GML", "XML"]

 },

 "GlossSee": "markup"

 }

 }

 }

 }

}

After running this example, the resulting page in browser should look like this:

Elements of GlossEntry: ID,SortAs,GlossTerm,Acronym,Abbrev,GlossDef,GlossSee

21.43 $WBJSONLEN - length of JSON object

Availability
$WBJSONLEN is available for use with all WBSP commands.

Syntax

$WBJSONLEN{JSONSource|JSONArrayName}
$WBJSONLEN[JSONSource|JSONArrayName]

Parameters
JSONSource - String value containing JSON to be searched. Note that this is not an

URL of the JSON file but JSON source itself.
JSONArrayName - The name of the array. Do not use brackets () or square brackets
[] in array name. Note that JSON array names are case sensitive.

Returns

Number of elements of JSONArrayName.

Example

[FormFields]

wb_command=R

<!--WB_BeginTemplate-->

<html>

<head>

 <title>WBJSONLEN</title>

</head>

<body>

$wbsetv[JSON|$wbrinc[sample.json]]

Number of elements in "See also" array:

$wbjsonlen[$wbgetv[json]|glossary.GlossDiv.GlossList.GlossEntry.GlossDe

f.GlossSeeAlso]

</body>

</html>

File Sample.json

{

 "glossary":

 {

 "title": "example glossary",

 "GlossDiv":

 {

 "title": "S",

 "GlossList":

 {

 "GlossEntry":

 {

 "ID": "SGML",

 "SortAs": "SGML",

 "GlossTerm": "Standard Generalized Markup Language",

 "Acronym": "SGML",

 "Abbrev": "ISO 8879:1986",

 "GlossDef":

 {

 "para": "A meta-markup language, used to create markup

languages such as DocBook.",

 "GlossSeeAlso": ["GML", "XML"]

 },

 "GlossSee": "markup"

 }

 }

 }

 }

}

After running this example, the resulting page in browser should look like this:

Number of elements in "See also" array: 2

21.44 $WBPOSTURL - get data from URL (POST method)

Availability

$WBPOSTURL is available for use with all WBSP commands.

Syntax
$WBPOSTURL{URL|PostData|FullPage|ContentType|SoapAction|Options|Heade
rs}

$WBPOSTURL[URL|PostData|FullPage|ContentType|SoapAction|Options|Heade
rs]

Parameters
URL - The Internet address of the resource (page, file) you want to include in your

page. It can be either absolute (containing entire address including protocol, server,
path and resource) or relative (to document root of virtual server if it starts with
slash / character, or to the directory where the WBSP file is located).

PostData - data to be posted in format var1=value 1&var2= value 2&...&varn= value

n for ordinary POST or as XML for SOAP.

FullPage - optional parameter. If set to true (T) function will return entire page code
without truncating code outside <body> and </body> tags.
ContentType - optional parameter. Sets the Content-Type clause in HTTP request

header. If omitted WhizBase will send the default value application/x-www-form-
urlencoded
SoapAction - optional parameter. Sets the SOAPAction clause in HTTP request header

for web services. If omitted no default value will be sent.
Options - optional parameter. Contains comma-separated list of ServerXMLHTTP
options in form optionnumber=optionvalue.

Headers - optional parameter. Contains comma-separated list of ServerXMLHTTP
request headers in form headername= headervalue

Returns
Source code of the received page/file. If source code contains <body> and </body>

tags and FullPage is not set to true, function will include only the source code
between these tags.

Example
File PostCookiesA.wbsp

[FormFields]

wb_command=R

<!--WB_BeginTemplate-->

<html>

<head>

<LINK $wbgc[css]"=""

|

$wbif["$wbrv[style]"=""|style1.css|$wbrv[style]]

|

$wbif["$wbv[css]"=""|style1.css|$wbposturl[changecss.wbsp|css=$wbv[css]

]]

]" type=text/css rel=stylesheet>

<title>Cookie test</title>

</head>

<body>

Cookie value:($wbgc[css])

Variable value:($wbrv[style])

<form action="setcookieA.wbsp" method="post">

<input type="hidden" name="css" value="style1.css">

<input type="hidden" name="sp" value="$wbe[script_name]">

<input type="submit" value="Style 1">

</form>

<form action="setcookieA.wbsp" method="post">

<input type="hidden" name="css" value="style2.css">

<input type="hidden" name="sp" value="$wbe[script_name]">

<input type="submit" value="Style 2">

</form>

</body>

</html>

File SetCookieA.wbsp

[FormFields]

wb_command=R

wb_redirect=http://$wbe[server_name]$wbv[sp]?css=$wbv[css]

wb_addcookie=CSS=$wbv{CSS}

File ChangeCss.wbsp

<!--

[FormFields]

wb_filename=/default.inc

wb_command=wf

wb_keyname=Style

wb_keyvalue=$wbv{css}

wb_section=Userdata

-->

<!--WB_BeginTemplate-->$wbv[css]

File style1.css

body{

font-family:Verdana;

font-size:12px;

color:#333333;

background-color:#efefef;

}

a{

text-decoration:none;

color:#0065b7;

font-weight:bold;

}

a:hover{

color:#cc0000;

}

File style2.css

body{

font-family:Verdana;

font-size:12px;

color:#0000cc;

background-color:#ffffff;

}

a{

text-decoration:none;

color:#6500b7;

font-weight:bold;

}

a:hover{

color:#00cc00;

}

After running this example (file postcookiesa.wbsp) the page will change its
appearance depending on value of cookie named CSS (if it exists) or depending on a

value of user defined variable Style in file /default.inc, or if neither of those two

exists, it will use file style1.css. When you click the either of buttons ("Style 1" and

"Style 2") it will set the cookie to selected value, call the file changecss.wbsp (with
selected value as parameter named CSS) using $WBPOSTURL function, and write
new value to file /default.inc as user-defined variable "Style".

21.45 $WBRENDER - process WhizBase code

Availability

$WBRENDER is available for use with all WBSP commands:

Syntax
$WBRENDER{anystring}
$WBRENDER[anystring]

Parameters

anystring - any string containing WhizBase tag(s) and function(s).

Returns
The rendered value of anystring. This means that WhizBase will process any tag
and/or function contained in anystring before it sends it to the client

<BEXAMPLE< B>

<!--

[FormFields]

wb_command=q

wb_basename=biblioA.mdb

wb_rcdset=titles

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBRENDER example</title>

</head>

<body>

$WBRENDER[$wbsrq[getrep.sr|id=$wbfn[HTUser]]]

</body>

</html>

If we assume that there is another table in the database that contains different
WhizBase and HTML code for the body of the report for every user then getrep.sr
subreport should return a WhizBase code for displaying the contents of the "titles"

table in "biblioA.mdb" database. So, calling subreport alone will return unprocessed
WhizBase code, but using $WBRF in subreport will produce the error (Item not found
in this collection). So, subreport MUST NOT process the code, but return it to the

main report. There we use $WBRENDER to instruct the WhizBase to process the code
in main report. This is just one of many possible usages of $WBRENDER function.

21.46 $WBRINC - include file

Availability
$WBRINC is available for use with all WBSP commands.

Syntax

$WBRINC{includefilename}
$WBRINC[includefilename]

Parameters
includefilename - full path and file name of the file that should be included. Included

file can NOT contain <!--WB_BeginDetail--> and <!--WB_EndDetail--> comments.

Returns

Source code of the file includefilename. If source code contains <body> and
</body> tags, function will include only the source code between these tags.

Example

[FormFields]

wb_command=R

wb_showlogo=F

<!--WB_BeginTemplate-->

<html>

<body>

$WBRINC[menu.ic]

</body>

</html>

File menu.ic

<html>

<body>

<a >Link 1

<a >Link 2

</body>

</html>

After running this example, the resulting page in web browser may look like this:

Link 1

Link 2

21.47 $WBRNDSTR - randomly generated string

Availability
$WBRNDSTR is available for use with all WBSP commands.

Syntax
$WBRNDSTR{length|type}

$WBRNDSTR[length|type]

Parameters
length - the length of a generated random string in characters
type - optional parameter - defines which characters will be used:

A - Alphanumeric uppercase (A-Z and 0-9)
AM - Alphanumeric (A-Z a-z and 0-9)
AL - Alphanumeric lowercase (a-z and 0-9)

L - Letters uppercase (A-Z)

LM - Letters (A-Z a-z)

LL - Letters lowercase (a-z)
N - Numbers (0-9)

Returns
Randomly generated string.

Example

<!--

[FormFields]

wb_command=R

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBRNDSTR</title>

</head>

<body>

$WBRNDSTR[20|A]

$WBRNDSTR[20|L]

$WBRNDSTR[20|N]

</body>

</html>

After running this example, the resulting page in browser should look like this:

V081XDSMKE21TE4VGABZ
ZQTLBHOJSDQJBJRLQKJD

33863882287748758754

21.48 $WBROUND - rounds number value to specified number of decimal
places

Availability
$WBROUND is available for use with all WBSP commands.

Syntax

$WBROUND{number|decimals}
$WBROUND[number|decimals]

Parameters
number - the number to be rounded

decimals - optional parameter containing number of decimal places. Default value is
0 (round to integer).

Returns
Number value rounded to specified decimal places.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBRound</title>

</head>

<body>

Original number: $wbsetv[number|41488.53617|T]

Integer: $wbround[$wbgetv[number]]

Two decimal places: $wbround[$wbgetv[number]|2]

Three decimal places: $wbround[$wbgetv[number]|3]

Four decimal places: $wbround[$wbgetv[number]|4]

</body>

</html>

After running this example you should get the following:

Original number: 41488.53617
Integer: 41489
Two decimal places: 41488.54
Three decimal places: 41488.536

Four decimal places: 41488.5362

21.49 $WBRRV - read and render configuration variable

Availability
$WBRRV is available for use with all WBSP commands:

Syntax
$WBRRV{varname}

$WBRRV[varname]

Parameters
varname - the name of requested variable defined in configuration section. It can be
either WhizBase variable or any variable defined in any Userdata section (either in

WBSP file itself or in include files)

Returns

The value of the variable varname with all WhizBase functions and tags processed

Example

<!--

[FormFields]

wb_command=q

wb_basename=biblioA.mdb

wb_rcdset=titles

wb_query=id=$wbfn{rnd(28)}

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBRRV example</title>

</head>

<body>

WBRV:$WBRV[wb_query]

WBRRV:$WBRRV[wb_query]

WBV:$wbv[wb_query]

WBQuery:$wbquery

$wbdetail[f]

</body>

</html>

After running this example, the resulting page in browser, may look like this:

WBRV:id=$wbfn{rnd(28)}
WBRRV:id=5
WBV:

WBQuery:id=13

Title Fireworks 4 for Windows and Macintosh Visual Quickstart Guide

Year Published 2001

ISBN 0201731339

PubID 1

AU_ID 2

imageURL 0201731339.jpg

Qty 100

Price 100

ID 13

In this example we can see that $WBRV will return exact content of the variable, as
it is written in file. $WBV function will return an empty string, because WB_Query is
not sent as form variable, but defined in file. $WBRRV will return processed value of

the variable, but the processing will take place in the moment of executing
$WBRRV function, so returned value for $wbfn{rnd(28)} will not be the same as
used to select the record ($WBQuery contains correct value).

21.50 $WBRUN - execute external script

Availability
$WBRUN is available for use with all WBSP commands in scripting languages listed in
Execute variable of WBSP.ssc file.

Syntax

$WBRUN{scriptfilename|Language|function(fnargs)}
$WBRUN[scriptfilename|Language|function(fnargs)]

Parameters

scriptfilename - full path and file name of the file where script code is stored
language - name of the scripting language used in script (e.g. JavaScript, VBScript,
JScript, etc.)

function - name of the function that should be executed - fnargs are arguments
required by the script function, not by the WBSP

Returns
Result returned by script function.

Example

[FormFields]

wb_command=R

wb_showlogo=F

<!--WB_BeginTemplate-->

<html>

<body>

File size for biblio.mdb:

$wbrun[getfilesize.vbs|VBScript|getFSize("$wbcurrdir[]biblio.mdb")]

</body>

</html>

File getfilesize.vbs

Function getFSize(fname)

Dim fso

Dim fil

Set fso = CreateObject("Scripting.FileSystemObject")

set fil = fso.GetFile(fname)

sizebytes=fil.size

if sizebytes<1024 then getFSize=sizebytes & " bytes": exit function

if sizebytes<1024^2 then getFSize=formatnumber(sizebytes/1024,2) & "

KB": exit function

getFSize=formatnumber(sizebytes/1024^2,2) & " MB"

end function

After running this example, the resulting page in web browser may look like this:

File size for biblio.mdb: 112,00 KB

21.51 $WBRV - read configuration variable

Availability

$WBRV is available for use with all WBSP commands:

Syntax
$WBRV{varname}
$WBRV[varname]

Parameters

varname - the name of requested variable defined in configuration section. It can be
either WhizBase variable or any variable defined in any Userdata section (either in

WBSP file itself or in include files)

Returns
The value of the variable varname

Example

<!--

[FormFields]

wb_command=q

wb_basename=biblioA.mdb

wb_rcdset=titles

wb_query=id=$wbfn{rnd(28)}

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBRV example</title>

</head>

<body>

WBRV:$wbrv[wb_query]

WBRRV:$wbrrv[wb_query]

WBV:$wbv[wb_query]

WBQuery:$wbquery

$wbdetail[f]

</body>

</html>

After running this example, the resulting page in browser, may look like this:

WBRV:id=$wbfn{rnd(28)}
WBRRV:id=5
WBV:
WBQuery:id=13

Title Fireworks 4 for Windows and Macintosh Visual Quickstart Guide

Year Published 2001

ISBN 0201731339

PubID 1

AU_ID 2

imageURL 0201731339.jpg

Qty 100

Price 100

ID 13

In this example we can see that $WBRV will return exact content of the variable, as
it is written in file. $WBV function will return an empty string, because WB_Query is
not sent as form variable, but defined in file. $WBRRV will return processed value of

the variable, but the processing will take place in the moment of executing

$WBRRV function, so returned value for $wbfn{rnd(28)} will not be the same as

used to select the record ($WBQuery contains correct value).

21.52 $WBSETV - set value of WB variable

Important: $WBSETV function has effect on entire WBSP page and all it's sub
elements (configuration section, included files, sub reports, etc.). All instances of
$WBSETV function that use the same variable name will set same variable regardless

of their location inside WBSP page (e.g. $WBSETV[somevar|0] in main WBSP page
and $WBSETV[somevar|$wbp[RC]] in subreport will change the value of the same
variable named somevar.

Availability

$WBSETV is available for use with all WBSP commands.

Syntax
$WBSETV{varname|varvalue|showvar}

$WBSETV[varname|varvalue|showvar]

Parameters
varname - the name of global WBSP variable to which the new value will be assigned
varvalue - the value that will be assigned

showvar - optional parameter - if set to true (T,ON,1) WhizBase will show the
assigned value

Returns
Assigned value if showvar parameter is set to true, otherwise it returns nothing, just
sets the value of a variable.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

$wbsetv[loopcounter|0]

$WBWHILE[$wbgetv[loopcounter]<=10|

The loopcounter value is:$wbgetv[loopcounter]

$wbsetv[loopcounter|$wbcalc[$wbgetv[loopcounter]+1]]

]

Loop ended, loopcounter value is $wbgetv[loopcounter]!

</body>

</html>

After running this example, the resulting page in browser may look like this:

The loopcounter value is:0

The loopcounter value is:1
The loopcounter value is:2
The loopcounter value is:3

The loopcounter value is:4
The loopcounter value is:5
The loopcounter value is:6

The loopcounter value is:7
The loopcounter value is:8
The loopcounter value is:9

The loopcounter value is:10

Loop ended, loopcounter value is 11!

21.53 $WBSPLIT - convert string to array

Important: $WBSPLIT function has effect on entire WBSP page and all it's sub
elements (configuration section, included files, sub reports, etc.). All instances of

$WBSPLIT function that use the same array name will set same array regardless of
their location inside WBSP page.

Availability
$WBSPLIT is available for use with all WBSP commands.

Syntax

$WBSPLIT{data|arrayname|separator|showvar|sort}
$WBSPLIT[data|arrayname|separator|showvar|sort]

Parameters
data - the string value (text) to be split

arrayname - the name of the array where elements will be stored
separator - a string containing one or more characters to use in separating the string
showvar - optional parameter - if set to true (T,ON,1) WhizBase will show the last

index (length-1) of resulting array
sort - optional parameter - if it exists WhizBase will sort the resulting array
ascending (sort=A) or descending (sort=D). Any other sort value will be ignored.

Returns

Number of elements in resulting array if showvar parameter is set to true, otherwise
it returns nothing, just creates the array.

Example

<!--

[FormFields]

wb_command=R

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBSplit</title>

</head>

<body>

$wbsetv[filecount|0]

$wbwhile[$wbgetv[filecount]<=$wbsplit[$wbdir[]|dirlist|,|t|A]

|

$wbgetv[dirlist($wbgetv[filecount])]

$wbsetv[filecount|$wbcalc[$wbgetv[filecount]+1]]

]

</body>

</html>

After running this example, the resulting page in browser should contain the list of all
files in the directory where current WBSP file is located.

21.54 $WBSUB - execute sub-routine

Availability

$WBSUB is available for use with all WBSP commands.

Syntax
$WBSUB{subname}
$WBSUB[subname]

Parameters

subname - name of the required subroutine

Returns
Processed code of the subroutine named subname.

Example

[FormFields]

wb_command=r

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBSUB test</title>

</head>

<body>

$wbwhile[$wbgetv[r]<100|

$wbsetv[r|$wbcalc[$wbgetv[r]+10]]

Disk radius: $wbgetv[r] - Disk area: $wbsub[diskarea]

]

</body>

</html>

<!--wb_beginsub_diskarea-->

$wbformat[$wbcalc[$wbgetv[r]^2*3.1415926535897932384626433832795]|#.000

]

<!--WB_EndSub-->

After running this example, the resulting page in browser should look like this:

Disk radius: 10 - Disk area: 314,159

Disk radius: 20 - Disk area: 1256,637
Disk radius: 30 - Disk area: 2827,433
Disk radius: 40 - Disk area: 5026,548

Disk radius: 50 - Disk area: 7853,982
Disk radius: 60 - Disk area: 11309,734
Disk radius: 70 - Disk area: 15393,804

Disk radius: 80 - Disk area: 20106,193
Disk radius: 90 - Disk area: 25446,900

Disk radius: 100 - Disk area: 31415,927

21.55 $WBUNESC - decode URL-encoded string

Availability

$WBUNESC is available for use with all WBSP commands:

Syntax
$WBUNESC{URLEncodedString}
$WBUNESC[URLEncodedString]

Parameters

URLEncodedString - any string encoded using $WBESC, $WBVC, $WBFC

Returns

Decoded value of URLEncodedString.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head><title>WBUNESC example</title></head>

<body>

Encoded text: %E4%DF%FC%E2

WBUNESC:($WBUNESC[%E4%DF%FC%E2])

</body>

</html>

After running this example the HTML code of resulting page in browser, may look like
this:

<html>

<head><title>WBUNESC example</title></head>

<body>

Encoded text: %E4%DF%FC%E2

WBUNESC:(äßüâ)

</body>

</html>

21.56 $WBUNTIL - loop until a condition becomes True

Important: If condition is not set properly $WBUNTIL function can get in infinite

loop and stop the page processing until servers CGITimeOut is reached.

Availability
$WBUNTIL is available for use with all WBSP commands.

Syntax
$WBUNTIL{condition|content}

$WBUNTIL[condition|content]

Parameters
condition - an expression that can be True or false when evaluated
content - block of code (including WhizBase elements) that will be repeated until

condition becomes True

Returns
Code contained in content repeated until condition becomes True.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

$wbsetv[randomnum|0]

$WBUNTIL[$wbgetv[randomnum]=30|

The random number is:$wbgetv[randomnum]

$wbsetv[randomnum|$wbfn[rnd(50)]]

]

Loop ended, random number value is $wbgetv[randomnum]!

</body>

</html>

After running this example, the resulting page in browser, may look like this:

The random number is:0
The random number is:37
The random number is:33

The random number is:22
The random number is:41
The random number is:32

The random number is:23
The random number is:37
The random number is:46

Loop ended, random number value is 30!

Refresh the page few times and watch the changes of the result.

21.57 $WBURL - generate navigation url

Availability

QUERY command.

Syntax
$WBURL{URLType}
$WBURL[URLType]

Parameters

URLType - two-letter code describing required navigation link URL. Valid values are:
PP – previous page
NP – next page

FP – first page
LP – last page

Returns
URL of required navigation link.

Example

[FormFields]

WB_basename=biblio.mdb

wb_rcdset=titles

wb_command=Q

wb_maxrec=5

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

<table border="1" cellspacing="0">

<tr>

<td>Year published</td>

<td>Title</td>

<td>ISBN</td>

</tr>

<!--WB_BeginDetail-->

<tr>

<td>$wbf[Year published]</td>

<td>$wbf[title]</td>

<td>$wbf[ISBN]</td>

</tr>

<!--WB_EndDetail-->

</table>

<center>

<a >Previous page <a >Next page

</center>

</body>

</html>

After running this example, the resulting HTML code (part that includes generated
navigation links), actually received by browser, may look like this:

<center>

<a>Previouspage<a>Next page

</center>

21.58 $WBVDHR - virtual directory home reference

Availability
$WBVDHR is available for use with all WBSP commands.

Syntax
$WBVDHR

$WBVDHR[]
$WBVDHR{}

Returns

Path to the root directory of the current virtual host as it is defined in server-side
variable VirtualDirHomeRef. Used to refer to wwwroot directory from files located in
virtual directory .

Here's an example:

<!--

[FormFields]

wb_basename=$wbvdhr{}/database/biblio.mdb

-->

21.59 $WBWHILE - loop while a condition is True

Important: If condition is not set properly $WBWHILE function can get in infinite
loop and stop the page processing until servers CGITimeOut is reached.

Availability
$WBWHILE is available for use with all WBSP commands.

Syntax

$WBWHILE{condition|content}
$WBWHILE[condition|content]

Parameters
condition - an expression that can be True or false when evaluated

content - block of code (including WhizBase elements) that will be repeated while
condition is True

Returns
Code contained in content repeated while condition is True.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

$wbsetv[loopcounter|0]

$WBWHILE[$wbgetv[loopcounter]<=10|

The loopcounter value is:$wbgetv[loopcounter]

$wbsetv[loopcounter|$wbcalc[$wbgetv[loopcounter]+1]]

]

Loop ended, loopcounter value is $wbgetv[loopcounter]!

</body>

</html>

After running this example, the resulting page in browser, may look like this:

The loopcounter value is:0
The loopcounter value is:1

The loopcounter value is:2
The loopcounter value is:3
The loopcounter value is:4

The loopcounter value is:5
The loopcounter value is:6
The loopcounter value is:7

The loopcounter value is:8
The loopcounter value is:9
The loopcounter value is:10

Loop ended, loopcounter value is 11!

21.60 $WBXCHNAMES - XML node child node names

Availability
$WBXCHNAMES is available for use with all WBSP commands.

Syntax
$WBXCHNAMES{XMLSource|pattern|delimiter}

$WBXCHNAMES[XMLSource|pattern|delimiter]

Parameters
XMLSource - String value containing XML to be searched. Note that this is not an
URL of the XML file but XML source itself.

pattern - Any valid XPath pattern (). When using square brackets in pattern use
$WBFN[CHR(91)] for left and $WBFN[CHR(93)] for right square bracket, or use
escape characters.

delimiter - optional paramater - contains the character that will be used to separate
names of child nodes. Default value is comma (,).

Returns
Names of the child nodes of node(s) matching XPath pattern separated by delimiter.

Example

[FormFields]

wb_command=R

<!--WB_BeginTemplate-->

<html>

<head>

 <title>XChNames</title>

</head>

<body>

$wbxchnames[$wbgeturl[xmlsample.xml]|//codes/condition]

</body>

</html>

File XMLSample.xml

<?xml version="1.0" encoding="UTF-8"?>

<codes>

 <condition>

 <code>XXX</code>

 <description>XXX description</description>

 <day_icon>XXXDayIcon.png</day_icon>

 <night_icon>XXXNightIcon.png</night_icon>

 </condition>

 <condition>

 <code>YYY</code>

 <description>YYY description</description>

 <day_icon>DayYYYIcon.png</day_icon>

 <night_icon>NightYYYIcon.png</night_icon>

 </condition>

 <condition>

 <code>ZZZ</code>

 <description>ZZZ description</description>

 <day_icon>DayIconZZZ.png</day_icon>

 <night_icon>NightIconZZZ.png</night_icon>

 </condition>

</codes>

After running this example, the resulting page in browser should look like this:

code,description,day_icon,night_icon

21.61 $WBXMLHTTP - get data from URL

Availability
$WBXMLHTTP is available for use with all WBSP commands.

Syntax
$WBXMLHTTP{URL|PostData|FullPage|ContentType|SoapAction|Options|Heade

rs|Method}
$WBXMLHTTP[URL|PostData|FullPage|ContentType|SoapAction|Options|Heade
rs|Method]

Parameters

URL - The Internet address of the resource (page, file) you want to include in your

page. It can be either absolute (containing entire address including protocol, server,

path and resource) or relative (to document root of virtual server if it starts with
slash / character, or to the directory where the WBSP file is located).
PostData - data to be posted in format var1=value 1&var2= value 2&...&varn= value

n for ordinary POST or as XML for SOAP.
FullPage - optional parameter. If set to true (T) function will return entire page code
without truncating code outside <body> and </body> tags.

ContentType - optional parameter. Sets the Content-Type clause in HTTP request
header. If omitted WhizBase will send the default value application/x-www-form-
urlencoded

SoapAction - optional parameter. Sets the SOAPAction clause in HTTP request header
for web services. If omitted no default value will be sent.

Options - optional parameter. Contains comma-separated list of ServerXMLHTTP
options in form optionnumber=optionvalue.
Headers - optional parameter. Contains comma-separated list of ServerXMLHTTP

request headers in form headername= headervalue
Method - optional parameter. Contains HTTP method. Valid values are GET, HEAD,
POST, PUT, DELETE, CONNECT, OPTIONS, TRACE. Default value is POST.

Returns
Source code of the received page/file. If source code contains <body> and </body>

tags and FullPage is not set to true, function will include only the source code
between these tags.

Example
File PostCookiesA.wbsp

[FormFields]

wb_command=R

<!--WB_BeginTemplate-->

<html>

<head>

<LINK href="$wbif[

"$wbgc[css]"=""

|

$wbif["$wbrv[style]"=""|style1.css|$wbrv[style]]

|

$wbif["$wbv[css]"=""|style1.css|$WBXMLHTTP[changecss.wbsp|css=$wbv[css]

]]

]" type=text/css rel=stylesheet>

<title>Cookie test</title>

</head>

<body>

Cookie value:($wbgc[css])

Variable value:($wbrv[style])

<form action="setcookieA.wbsp" method="post">

<input type="hidden" name="css" value="style1.css">

<input type="hidden" name="sp" value="$wbe[script_name]">

<input type="submit" value="Style 1">

</form>

<form action="setcookieA.wbsp" method="post">

<input type="hidden" name="css" value="style2.css">

<input type="hidden" name="sp" value="$wbe[script_name]">

<input type="submit" value="Style 2">

</form>

</body>

</html>

File SetCookieA.wbsp

[FormFields]

wb_command=R

wb_redirect=http://$wbe[server_name]$wbv[sp]?css=$wbv[css]

wb_addcookie=CSS=$wbv{CSS}

File ChangeCss.wbsp

<!--

[FormFields]

wb_filename=/default.inc

wb_command=wf

wb_keyname=Style

wb_keyvalue=$wbv{css}

wb_section=Userdata

-->

<!--WB_BeginTemplate-->$wbv[css]

File style1.css

body{

font-family:Verdana;

font-size:12px;

color:#333333;

background-color:#efefef;

}

a{

text-decoration:none;

color:#0065b7;

font-weight:bold;

}

a:hover{

color:#cc0000;

}

File style2.css

body{

font-family:Verdana;

font-size:12px;

color:#0000cc;

background-color:#ffffff;

}

a{

text-decoration:none;

color:#6500b7;

font-weight:bold;

}

a:hover{

color:#00cc00;

}

After running this example (file postcookiesa.wbsp) the page will change its
appearance depending on value of cookie named CSS (if it exists) or depending on a
value of user defined variable Style in file /default.inc, or if neither of those two
exists, it will use file style1.css. When you click the either of buttons ("Style 1" and

"Style 2") it will set the cookie to selected value, call the file changecss.wbsp (with
selected value as parameter named CSS) using $WBXMLHTTP function, and write
new value to file /default.inc as user-defined variable "Style".

21.62 $WBXPATH – Xpath

Availability

$WBXPATH is available for use with all WBSP commands.

Syntax
$WBXPATH{XMLSource|pattern|Namespaces}

$WBXPATH[XMLSource|pattern|Namespaces]

Parameters
XMLSource - String value containing XML to be searched. Note that this is not an
URL of the XML file but XML source itself.

pattern - Any valid XPath pattern (). When using square brackets in pattern use
$WBFN[CHR(91)] for left and $WBFN[CHR(93)] for right square bracket, or use
escape characters .

Namespaces - optional parameter containing XML namespace(s) in form
nsID=nsURI.

Returns
Value(s) of node(s) matching XPath pattern .

Example

[FormFields]

wb_command=R

<!--WB_BeginTemplate-->

<html>

<head>

 <title>Xpath</title>

</head>

<body>

$wbsetv[xml|$wbgeturl[xmlsample.xml]]

$wbsetv[loopcounter|1]

$WBWHILE[$wbgetv[loopcounter]<=3|

$wbxpath[$wbgetv[xml]|//codes/condition$wbfn[chr(91)]position() =

$wbgetv[loopcounter]$wbfn[chr(93)]/description]

$wbsetv[loopcounter|$wbcalc[$wbgetv[loopcounter]+1]]

]

</body>

</html>

File XMLSample.xml

<?xml version="1.0" encoding="UTF-8"?>

<codes>

 <condition>

 <code>XXX</code>

 <description>XXX description</description>

 <day_icon>XXXDayIcon.png</day_icon>

 <night_icon>XXXNightIcon.png</night_icon>

 </condition>

 <condition>

 <code>YYY</code>

 <description>YYY description</description>

 <day_icon>DayYYYIcon.png</day_icon>

 <night_icon>NightYYYIcon.png</night_icon>

 </condition>

 <condition>

 <code>ZZZ</code>

 <description>ZZZ description</description>

 <day_icon>DayIconZZZ.png</day_icon>

 <night_icon>NightIconZZZ.png</night_icon>

 </condition>

</codes>

After running this example, the resulting page in browser should look like this:

XXX description

YYY description
ZZZ description

21.63 DB related functions

Because these functions work with recordset and input functions are

processed before opening the database it is not possible to use all these functions in
input syntax func{arg}. Functions that can be used in input syntax ($WBSR and

$WBSRQ) have both syntax forms listed.

$WBDetail

$WBF
$WBRF

$WBFF

$WBFU

$WBFC

$WBP

$WBSR
$WBSRQ

21.63.1 $WBDetail - show values of all fields

Availability
$WBDETAIL is available for use with following recordset related WBSP commands:
UPDATE

MULTI UPDATE
DELETE
QUERY

Send Personal Mail (if recordset is used)

Send Bulk Mail.

Syntax
$WBDETAIL[layout]

Parameters
layout - single letter value defining the layout of generated detail section. Valid

values are T for tabular layout and F for columnar layout

Returns

Complete detail section with all database fields contained in recordset, formatted
using CSS classes as follows:

For tabular layout
wbspttbl - class for table (<table class="wbspttbl"...)
wbspthdr - class for cells in first (header) row (<td class="wbspthdr"...)

wbsptrow - class for cells in data rows (<td class="wbsptrow"...)
For columnar layout
wbspftbl - class for table (<table class="wbspftbl"...)

wbsptdlbl - class for cells in left (label) column (<td class="wbsptdlbl"...)
wbsptdfld - class for cells in right (data) column (<td class="wbsptdfld"...)
wbsptdhr - class for cell at the bottom of every record containing the horizontal

line (<td class="wbsptdhr"...)

Example

[FormFields]

WB_Command=q

WB_Basename=biblio.mdb

WB_Rcdset=titles

wb_showlogo=F

[MsgAndLbl]

WB_Style=font-family:verdana;font-size:12px;color:#CC0000;

<!--WB_BeginTemplate-->

<html>

<head>

<style>

.wbspttbl{

border:1px solid #000000;

font-family:verdana;

font-size:12px;

border-collapse:collapse;

border-spacing:0px;

}

.wbspthdr{

background-color:#CC0000;

border:1px solid #000000;

color:#C0C0C0;

}

.wbsptrow{

background-color:#FFCC00;

border:1px solid #000000;

color:#0000CC;

}

</style>

<title>Simple database example</title>

</head>

<body>

$wbdetail[t]

</body>

</html>

After running this example, the resulting page in browser, may look like this:

Title
Year

Published
ISBN PubID AU_ID

McGraw-Hill's Encyclopedia of Networking &
Telecommunications

2001 0072120053 10 10

Microsoft SMS Installer 2000 0072124474 10 9

Windows 2000 Iis 5.0 : A Beginner's Guide 2001 0072133724 9 9

Windows Nt Security Handbook 1996 0078822408 10 11

Microsoft Internet Information Server 4: the
Complete Reference

1998 0078824575 10 10

Non-Designer's Scan and Print Book, The 1999 0201353946 1 2

Real World Adobe InDesign 1.5 2000 0201354780 1 1

HTML 4 for the World Wide Web: Visual

Quickstart Guide
2000 0201354934 1 6

Real World Freehand 7 1997 0201688875 1 1

Netscape 3 for Macintosh Visual Quickstart
Guide

1996 0201694085 1 6

Kai's Power Tools 3 for Windows Visual

Quickstart Guide
1997 0201696681 1 2

InDesign 1.0/1.5 for Macintosh and Windows:
Visual QuickStart Guide

2000 0201710366 1 2

Fireworks 4 for Windows and Macintosh Visual
Quickstart Guide

2001 0201731339 1 2

Macromedia FreeHand 10 for Windows and

Macintosh: Visual QuickStart Guide
2001 0201749653 1 2

Real World FreeHand 5.0/5.5 1996 0201883600 4 1

Sams Teach Yourself Macromedia
Dreamweaver 3 in 24 Hours

2000 0672318830 12 13

Sams Teach Yourself Macromedia

Dreamweaver 4 in 24 Hours
2000 0672320428 12 13

Photoshop 6 Photo-Retouching Secrets 2001 0735711461 3 3

www.color 2000 0823058573 8 7

Www.Layout : Effective Design and Layout for
the World Wide Web

2001 0823058581 8 8

1 2

First page Next page Last page

21.63.2 $WBF - show field value

Availability
$WBF is available for use with following recordset related WBSP commands:

UPDATE
MULTI UPDATE

DELETE

QUERY
Send Personal Mail (if recordset is used)
Send Bulk Mail.

Syntax

$WBF[fieldname]

Parameters
fieldname - exactly the same field name as defined in recordset.

Returns

1. The value stored in recordset field fieldname for current record.
2. Nothing (empty string) if recordset does not exist or there is no current

record, or if field value is NULL or empty string and WB_ShowEmpty is not set
to True.

3. if field value is NULL or empty string and WB_ShowEmpty is set to

True.

Example

<!--

[FormFields]

WB_basename=biblio.mdb

wb_rcdset=titles

wb_command=Q

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

<table border="1" cellspacing="0">

<tr>

<td>Year published</td>

<td>Title</td>

<td>ISBN</td>

</tr>

<!--WB_BeginDetail-->

<tr>

<td>$wbf[Year published]</td>

<td>$wbf[title]</td>

<td>$wbf[ISBN]</td>

</tr>

<!--WB_EndDetail-->

</table>

<center>$wbnavigator</center>

</body>

</html>

After running this example, the resulting page in browser, may look like this:

Year

published
Title ISBN

2001
McGraw-Hill's Encyclopedia of Networking &
Telecommunications

0072120053

2000 Microsoft SMS Installer 0072124474

2001 Windows 2000 Iis 5.0 : A Beginner's Guide 0072133724

1996 Windows Nt Security Handbook 0078822408

1998
Microsoft Internet Information Server 4: the Complete
Reference

0078824575

1999 Non-Designer's Scan and Print Book, The 0201353946

2000 Real World Adobe InDesign 1.5 0201354780

2000 HTML 4 for the World Wide Web: Visual Quickstart Guide 0201354934

1997 Real World Freehand 7 0201688875

1996 Netscape 3 for Macintosh Visual Quickstart Guide 0201694085

1997 Kai's Power Tools 3 for Windows Visual Quickstart Guide 0201696681

2000
InDesign 1.0/1.5 for Macintosh and Windows: Visual
QuickStart Guide

0201710366

2001
Fireworks 4 for Windows and Macintosh Visual Quickstart

Guide
0201731339

2001
Macromedia FreeHand 10 for Windows and Macintosh:
Visual QuickStart Guide

0201749653

1996 Real World FreeHand 5.0/5.5 0201883600

2000
Sams Teach Yourself Macromedia Dreamweaver 3 in 24
Hours

0672318830

2000
Sams Teach Yourself Macromedia Dreamweaver 4 in 24
Hours

0672320428

2001 Photoshop 6 Photo-Retouching Secrets 0735711461

2000 www.color 0823058573

2001
Www.Layout : Effective Design and Layout for the World
Wide Web

0823058581

1 2

First page Next page Last page

21.63.3 $WBFC - show URL-encoded field value

Availability
$WBFC is available for use with following recordset related WBSP commands:

UPDATE
MULTI UPDATE
DELETE

QUERY
Send Personal Mail (if recordset is used)
Send Bulk Mail.

Syntax

$WBFC[fieldname]

Parameters

fieldname - exactly the same field name as defined in recordset.

Returns

1. The url-encoded value stored in recordset field fieldname for current record.

2. Nothing (empty string) if recordset does not exist or there is no current record,
or if field value is NULL.

Example

<!--

[FormFields]

WB_basename=test.mdb

wb_rcdset=demo

wb_command=Q

wb_query=ID=4

-->

<!--WB_BeginTemplate-->

<html>

<body>

<!--WB_BeginDetail-->

This is original value (using WBF): $wbf[demotext]

This is a converted value (using WBFC): $WBFC[demotext]!

<!--WB_EndDetail-->

</body>

</html>

After running this example, the resulting page in browser, may look like this:

This is original value (using WBF):
This is some text that includes a lot of special characters like {} braces, [] brackets,
? question mark and this nice string !"#$%&/()=*

This is a converted value (using WBFC):
This%20is%20some%20text%20that%20includes%20a%20lot%20of%20special%2
0characters%20like%20%7B%7D%20braces%2C%20%5B%5D%20brackets%2C%

20%3F%20question%20mark%20and%20this%20nice%20string%20%21%22%23

%24%25%26%2F%28%29%3D*

21.63.4 $WBFF - show formated field value

Availability
$WBFF is available for use with following recordset related WBSP commands:

UPDATE
MULTI UPDATE
DELETE

QUERY
Send Personal Mail (if recordset is used)
Send Bulk Mail.

Syntax

$WBFF[fieldname|formatstring]

Parameters

fieldname - exactly the same field name as defined in recordset.
formatstring - any valid named or user-defined format string.

Returns

1. The value stored in recordset field fieldname for current record formatted
using formatstring

2. Nothing (empty string) if recordset does not exist or there is no current

record, or if field value is NULL.

Example

<!--

[FormFields]

WB_basename=test.mdb

wb_rcdset=demo

wb_command=Q

wb_query=ID=2

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Demo</title>

</head>

<body>

<!--WB_BeginDetail-->

Date/time

Original content (using WBF): $wbf[demodate]

Formated content (using WBFF): $wbff[demodate|dd.mm.yyyy]

Formated content (using WBFF): $wbff[demodate|dddd, dd mmmm, yyyy]

Formated content (using WBFF): $wbff[demodate|hh:mm:ss]

Formated content (using WBFF): $wbff[demodate|hh:mm:ss AM/PM]

Number

Original content (using WBF): $wbf[demonum]

Formated content (using WBFF): $wbff[demonum|#,###.00]

Formated content (using WBFF): $wbff[demonum|0.000]

<!--WB_EndDetail-->

</body>

</html>

After running this example, the resulting page in browser, may look like this:

Date/time
Original content (using WBF): 1.7.2008 15:35:48
Formated content (using WBFF): 01.07.2008

Formated content (using WBFF): Tuesday, 01 July, 2008
Formated content (using WBFF): 15:35:48
Formated content (using WBFF): 03:35:48 PM

Number
Original content (using WBF): 365724,65625
Formated content (using WBFF): 365.724,66

Formated content (using WBFF): 365724,656

21.63.5 $WBFU - show field value as UTF-8

Availability

$WBFU is available for use with following recordset related WBSP commands:
UPDATE
MULTI UPDATE

DELETE
QUERY
Send Personal Mail (if recordset is used)

Send Bulk Mail.

Syntax
$WBFU[fieldname]

Parameters

fieldname - exactly the same field name as defined in recordset.

Returns

1. The value stored in recordset field fieldname for current record converted to

UTF-8 charset.
2. Nothing (empty string) if recordset does not exist or there is no current

record, or if field value is NULL.

Example

<!--

[FormFields]

WB_basename=test.mdb

wb_rcdset=demo

wb_command=Q

wb_query=ID=3

-->

<!--WB_BeginTemplate-->

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

</head>

<body>

<!--WB_BeginDetail-->

This is original value (using WBF): $wbf[demotext]

This is a converted value (using WBFU): $wbfu[demotext]!

<!--WB_EndDetail-->

</body>

</html>

After running this example, the resulting page in browser, may look like this:

This is original value (using WBF): ????

This is a converted value (using WBFU): ©®™ß!

21.63.6 $WBP - recordset properties

Availability

$WBP is available for use with following recordset related WBSP commands:
QUERY
Send Personal Mail (if recordset is used)

Send Bulk Mail.

Syntax
$WBP[propertyname]

Parameters
propertyname - two letter name of the required property of current recordset.

Valid values for propertyname are:
RC - record count

RN - record number
AP - absolute position
PP - percent position

Returns
The recordset property specified in propertyname.

RC - record count returns total number of records in a recordset
RN - record number returns actual record number for every record in a recordset
(starting with 1)

AP - absolute position returns the position for every record in a recordset (starting
with 0)
PP - percent position returns the percent position for every record in a recordset.

This propertyname value is not supported if ADO object is used!

Example

<!--

[FormFields]

WB_basename=biblio.mdb

wb_dbobject=D35

wb_rcdset=titles

wb_command=Q

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

<table border="1" cellspacing="0">

<tr>

<td>Title</td>

<td>Record number</td>

<td>Absolute position</td>

<td>Percent position</td>

</tr>

<!--WB_BeginDetail-->

<tr>

<td>$wbf[title]</td>

<td>$wbp[RN]</td>

<td>$wbp[AP]</td>

<td>$wbp[PP]</td>

</tr>

<!--WB_EndDetail-->

</table>

Total number of records:$wbp[RC]

<center>$wbnavigator</center>

</body>

</html>

After running this example, the resulting page in browser, may look like this:

Title
Record
number

Absolute
position

Percent
position

McGraw-Hill's Encyclopedia of Networking &
Telecommunications

1 0 0

Microsoft SMS Installer 2 1 3,571429

Windows 2000 Iis 5.0 : A Beginner's Guide 3 2 7,142857

Windows Nt Security Handbook 4 3 10,71429

Microsoft Internet Information Server 4: the

Complete Reference
5 4 14,28571

Non-Designer's Scan and Print Book, The 6 5 17,85714

Real World Adobe InDesign 1.5 7 6 21,42857

HTML 4 for the World Wide Web: Visual
Quickstart Guide

8 7 25

Real World Freehand 7 9 8 28,57143

Netscape 3 for Macintosh Visual Quickstart
Guide

10 9 32,14286

Kai's Power Tools 3 for Windows Visual
Quickstart Guide

11 10 35,71429

InDesign 1.0/1.5 for Macintosh and Windows:

Visual QuickStart Guide
12 11 39,28571

Fireworks 4 for Windows and Macintosh Visual
Quickstart Guide

13 12 42,85714

Macromedia FreeHand 10 for Windows and
Macintosh: Visual QuickStart Guide

14 13 46,42857

Real World FreeHand 5.0/5.5 15 14 50

Sams Teach Yourself Macromedia
Dreamweaver 3 in 24 Hours

16 15 53,57143

Sams Teach Yourself Macromedia

Dreamweaver 4 in 24 Hours
17 16 57,14286

Photoshop 6 Photo-Retouching Secrets 18 17 60,71429

www.color 19 18 64,28571

Www.Layout : Effective Design and Layout for
the World Wide Web

20 19 67,85714

Total number of records:28
1 2

First page Next page Last page

21.63.7 $WBRF - show field value with processing WhizBase code

Availability

$WBRF is available for use with following recordset related WBSP commands:
UPDATE
MULTI UPDATE

DELETE
QUERY
Send Personal Mail (if recordset is used)

Send Bulk Mail.

Syntax
$WBRF[fieldname]

Parameters

fieldname - exactly the same field name as defined in recordset.

Returns

1. The rendered value stored in recordset field fieldname for current record. This

means that WBSP will process any WBSP tag and/or function contained in the
field value before it sends it to the client

2. Nothing (empty string) if recordset does not exist or there is no current

record, or if field value is NULL.

Example

<!--

[FormFields]

WB_basename=test.mdb

wb_rcdset=demo

wb_command=Q

wb_query=ID=1

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Demo</title>

</head>

<body>

<table border="1" cellspacing="0">

<tr>

<td>Original content (using WBF)</td>

<td>Rendered content (using WBRF)</td>

</tr>

<!--WB_BeginDetail-->

<tr>

<td>$wbf[demotext]</td>

<td>$wbrf[demotext]</td>

</tr>

<!--WB_EndDetail-->

</table>

</body>

</html>

After running this example, the resulting page in browser, may look like this:

Original content

(using WBF)

Rendered content

(using WBRF)

$wbfn[RND(10)] 5

Refresh the page few times and watch the changes of the result.

21.63.8 $WBSR - sub report

Availability
$WBSR is available for use with all WBSP commands:

Syntax
$WBSR{reportfilename}

$WBSR[reportfilename]

Parameters
reportfilename - full path and file name of the sub report file.

Returns
Source code of the processed report. If source code contains <body> and </body>
tags, function will include only the source code between these tags.

To learn more about sub reports, please read "WhizBase sub reports" page.

21.63.9 $WBSRQ - sub report with SQL where clause

Availability

$WBSRQ is available for use with all WBSP commands:

Syntax
$WBSRQ{reportfilename|whereclause}
$WBSRQ[reportfilename|whereclause]

Parameters

reportfilename - full path and file name of the sub report file
whereclause - the condition(s) that records must satisfy to be included in the report.

Returns
Source code of the processed report. If source code contains <body> and </body>
tags, function will include only the source code between these tags.

To learn more about sub reports, please read "WhizBase sub reports" page.

21.64 INI file functions

INI files are simple text files, usually associated with Microsoft Windows. The
filename extension usually used in Microsoft Windows is ".INI", but in WBSP, files
using the INI file format can use any extension, such as ".CFG", ".conf", or ".TXT".

The INI file structure is very simple. It contains parameters grouped in sections and

every parameter has a name and a value, delimited by an equals sign (=). The

sections are defined in a line by itself, in square brackets ([and]). All parameters
below the section definition are members of that section.

[Section]

parameter = value

WhizBase uses two functions for reading INI files:
$WBGV
$WBGS

21.64.1 $WBGS - get INI section

Availability
$WBGS is available for use with all WBSP commands:

Syntax

$WBGS{filename|sectionname|separator|size|render}
$WBGS[filename|sectionname|separator|size|render]

Parameters
filename - full path and file name of the configuration file

sectionname - the name of the requested section
separator - optional parameter that can be specified to separate individual variables
in form var1=value1separatorvar2=value2separator...varN=valueN

size - optional parameter that defines the amount of memory allocated for returned
values. The default value is 16384 bytes (16K). If more space is needed specify
greater number

render - optional boolean parameter (T/F) that defines whether the values will be
processed by WhizBase or returned as plain text

Returns
Values of all parameters parameter in specified section.

Example

File WBGS.wbsp

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBGS example</title>

</head>

<body>

$wbsetv[lng|eng]

$WBGS[resource.cfg|Messages|
||T]

</body>

</html>

File resource.cfg

[Messages]

HelloEng=Hello visitor from IP $wbe{remote_host}

HelloGer=Hallo Besucher von IP $wbe{remote_host}

HelloEsp=Hola visitante de IP $wbe{remote_host}

HelloIta=Ciao ospite da IP $wbe{remote_host}

HelloFra=Bonjour visiteur de IP $wbe{remote_host}

After running this example, the resulting page in browser, may look like this:

HelloEng=Hello visitor from IP 127.0.0.1
HelloGer=Hallo Besucher von IP 127.0.0.1
HelloEsp=Hola visitante de IP 127.0.0.1

HelloIta=Ciao ospite da IP 127.0.0.1

HelloFra=Bonjour visiteur de IP 127.0.0.1

21.64.2 $WBGV - get INI variable

Availability
$WBGV is available for use with all WBSP commands:

Syntax

$WBGV{filename|sectionname|varname|default|render}
$WBGV[filename|sectionname|varname|default|render]

Parameters
filename - full path and file name of the configuration file

sectionname - the name of the section that contains required parameter
varname - the name of the required parameter
default - optional default value that will be returned if required parameter does not

have a value
render - optional boolean parameter (T/F) that defines whether the value will be
processed by WhizBase or returned as plain text

Returns

Value of required parameter.

Example

File wbgv.wbsp

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBGV example</title>

</head>

<body>

$wbsetv[lng|eng]

$wbgv[resource.cfg|Messages|Hello$wbgetv[lng]||T]

</body>

</html>

File resource.cfg

[Messages]

HelloEng=Hello visitor from IP $wbe{remote_host}

HelloGer=Hallo Besucher von IP $wbe{remote_host}

HelloEsp=Hola visitante de IP $wbe{remote_host}

HelloIta=Ciao ospite da IP $wbe{remote_host}

HelloFra=Bonjour visiteur de IP $wbe{remote_host}

After running this example, the resulting page in browser, may look like this:

Hello visitor from IP 127.0.0.1

Then simply change the line $wbsetv[lng|eng] to $wbsetv[lng|esp] and the resulting
page will change to:

Hola visitante de IP 127.0.0.1

Try changing the value to ger, ita and fra and see the result.

21.65 Request related functions

$WBV
$WBVA

$WBVC
$WBVR
$WBVS

$WBVSC

21.65.1 $WBV - request variable

Availability
$WBV is available for use with all WBSP commands:

Syntax

$WBV{varname|render}
$WBV[varname|render]

Parameters
varname - the name of requested variable sent by client as a part of request using

either POST or GET method. It can be either WhizBase variable or any other variable
sent by client

render - optional boolean parameter (T/F) that defines whether the value will be
processed by WhizBase or returned as plain text

Returns

The value of the variable varname

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBV example</title>

</head>

<body>

$wbif["$wbv[thx]"<>""

|

$wbv[thx|t]

|

<form action="$wbe[script_name]" method="post">

<input type="hidden" name="thx" value="Thank you for submitting the

form, $wbv{name}!">

Please enter your name:
<input type="text" name="name" size="20">

<input type="submit" name="Sbutt" value="submit">

</form>

]

</body>

</html>

After running this example, the resulting page in browser, may look like this:

Please enter your name:

After submitting the form the resulting page will change to something like this:

Thank you for submitting the form, Faik Djikic!

21.65.2 $WBVA - separated list of request variables

Availability
$WBVA is available for use with all WBSP commands:

Syntax
$WBVA{typeofvars|separator}

$WBVA[typeofvars|separator]

Parameters
typeofvars - single letter flag that defines which POST or GET variables will be
returned. Valid values are:

A - all variables received through HTTP request (POST or GET)
W - WhizBase system variables (variable name starting with WB_) received through
HTTP request (POST or GET)

O - non WhizBase variables received through HTTP request (POST or GET)
separator - optional text parameter that will be used to separate returned varaibles.

If omitted, the default value
 will be used

Returns
Variables received through HTTP request (POST or GET), in form

variablename=variablevalueseparatorvariablename=variablevalueseparatorvariablen
ame=variablevalue

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBVA example</title>

</head>

<body>

$wbif["$WBV[thx]"<>""

|

$WBVA[A]

|

<form action="$wbe[script_name]" method="post">

<input type="hidden" name="thx" value="Thank you for submitting the

form, $WBV{name}!">

Please enter your name:
<input type="text" name="name" size="20">

<input type="submit" name="Sbutt" value="submit">

</form>

]

</body>

</html>

After running this example, the resulting page in browser, may look like this:

Please enter your name:

After submitting the form the resulting page will change to something like this:

thx=Thank you for submitting the form, $WBV{name}!
name=Faik Djikic

Sbutt=submit

21.65.3 $WBVC - URL-encoded request variable

Availability

$WBVC is available for use with all WBSP commands:

Syntax
$WBVC{varname|render}
$WBVC[varname|render]

Parameters

varname - the name of requested variable sent by client as a part of request using
either POST or GET method. It can be either WhizBase variable or any other variable
sent by client

render - optional boolean parameter (T/F) that defines whether the value will be
processed by WhizBase or returned as plain text

Returns
The url-encoded value of the variable varname

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBVC example</title>

</head>

<body>

$wbif["$WBV[thx]"<>""

|

$WBVC[thx|t]

|

<form action="$wbe[script_name]" method="post">

<input type="hidden" name="thx" value="Thank you for submitting the

form, $WBV{name}!">

Please enter your name:
<input type="text" name="name" size="20">

<input type="submit" name="Sbutt" value="submit">

</form>

]

</body>

</html>

After running this example, the resulting page in browser, may look like this:

Please enter your name:

After submitting the form the resulting page will change to something like this:

Thank%20you%20for%20submitting%20the%20form%2C%20Faik%20Djikic%21

21.65.4 $WBVR - unprocessed request variable

Important: The difference between $WBV and $WBVR functions appears when they

are used in wbsp file that receives data sent by form with
ENCTYPE="multipart/form-data", in which case function $WBV will always return
empty string if used in input syntax $wbv{varname}, and $WBVR will always return

empty string when used in report syntax $WBVR[varname]. In all other cases there
is no difference between these two functions.

Availability

$WBVR is available for use with all WBSP commands:

Syntax
$WBVR{varname}
$WBVR[varname]

Parameters

varname - the name of requested variable sent by client as a part of request using
either POST or GET method. It can be either WhizBase variable or any other variable
sent by client

Returns

The value of the variable varname.

Example

<!--

[FormFields]

wb_command=r

wb_allowmultipart=T

[Upload]

WB_Disallow=![jpg,gif,txt]

WB_Overwrite=F

WB_MaxFSize=24576

WB_UploadLog=$wbvr{name}up.log

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBVR example</title>

</head>

<body>

$wbif["$wbv[name]"<>""

|

<div style="position:relative;float:left;width:49%;border:1px solid

#000000;">WBV
$wbv[name]</div>

<div style="position:relative;float:left;width:49%;border:1px solid

#000000;">WBVR
$wbvr[name]</div>

|

<form action="$wbe[script_name]" method="post" ENCTYPE="multipart/form-

data">

Enter your name, please: <input type="text" name="name" size="20">

Please select the file (*.jpg;*.gif;*.txt - maximum size 24 KB): <input

type="file" name="File" size="20">

<input type="submit" name="Sbutt" value="submit">

</form>

]

</body>

</html>

After running this example, the resulting page in browser, may look like this:

Enter your name, please:
Please select the file (*.jpg;*.gif;*.txt - maximum size 24 KB):

After submitting the form the resulting page will change to something like this:

WBV

Faik

WBVR

And in directory where wbsp file was located you will find file Faikup.log with upload
details. If you change the line

WB_UploadLog=$wbvr{name}up.log to WB_UploadLog=$wbv{name}up.log and submit

the same form data again, the log file name will be up.log (without value of form
variable Name). This will happen because $WBV returns an empty string when tries

to read value of a variable submitted using multipart form.

21.65.5 $WBVS - multi-value variable separated as QUERY_STRING

Availability
$WBVS is available for use with all WBSP commands:

Syntax
$WBVS{varname}

$WBVS[varname]

Parameters
varname - the name of requested variable sent by client as a part of request using
either POST or GET method. It can be either WhizBase variable or any other variable

sent by client

Returns

The values of the multi-value variable varname separated as required for GET
request

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBVS example</title>

</head>

<body>

WBVS:

id=$wbvs[id]

WBV:

id=$wbv[id]

</body>

</html>

After running this example
(e.g.usingGETmethod:http://localhost/wbvs.wbsp?id=3&id=5&id=7), the resulting
page in browser, may look like this:

WBVS:

id=3&id=5&id=7
WBV:

id=3;5;7

21.65.6 $WBVSC - multi-value variable separated as QUERY_STRING and
URL-encoded

Availability
$WBVSC is available for use with all WBSP commands:

Syntax
$WBVSC{varname}

$WBVSC[varname]

Parameters
varname - the name of requested variable sent by client as a part of request using
either POST or GET method. It can be either WhizBase variable or any other variable

sent by client

Returns

The url-encoded values of the multi-value variable varname separated as required
for GET request

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBVSC example</title>

</head>

<body>

WBVSC:

id=$WBVSC[id]

WBV:

id=$wbv[id]

</body>

</html>

After running this example (e.g. using GET method:
http://localhost/WBVSC.wbsp?id=WhizBase Server Pages&id=Whizbase
3.000&id=WhizBase CGI Engine), the resulting page in browser, may look like this:

WBVSC:

id=WhizBase%20Server%20Pages&id=Whizbase%203.000&id=WhizBase%20CGI%2

0Engine
WBV:
id=WhizBase Server Pages;Whizbase 3.000;WhizBase CGI Engine

21.66 Session related functions

$WBGETS

$WBSETS

21.66.1 $WBGETS - get value of session variable

Availability
$WBGETS is available for use with all WBSP commands when WB_UseSession is set
to TRUE.

Syntax

$WBGETS{varname}
$WBGETS[varname]

Parameters

varname - the name of the variable

Returns

Value of requested session variable

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Cart</title>

</head>

<body>

Item $WBSETS[cartitems|$WBGETS[cartitems];$WBV[ItemID]|T] added

successfully!

</body>

</html>

21.66.2 $WBSETS - set value of session variable

Availability
$WBSETS is available for use with all WBSP commands when WB_UseSession is set

to TRUE.

Syntax
$WBSETS{varname|varvalue|showvar}
$WBSETS[varname|varvalue|showvar]

Parameters

varname - the name of the variable
varvalue - the value that will be saved
showvar - optional parameter - if set to true (T,ON,1) WhizBase will show the saved

value

Returns

Saved value if showvar parameter is set to TRUE, otherwise it returns nothing, just
saves the value of a variable in session

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Cart</title>

</head>

<body>

Item $WBSETS[cartitems|$WBGETS[cartitems];$WBV[ItemID]|T] added

successfully!

</body>

</html>

21.67 String manipulation functions

$WBCNL

$WBCSTR
$WBFORMAT

$WBHE
$WBINDOF
$WBLEFT

$WBLEN
$WBLINDOF
$WBMID

$WBMREPL
$WBREPL
$WBRIGHT

$WBRXE
$WBRXR
$WBTRIM

21.67.1 $WBCNL - clear new line

Availability
$WBCNL is available for use with all WBSP commands:

Syntax
$WBCNL{anystring}

$WBCNL[anystring]

Parameters
anystring - any textual value that can be either WhizBase tag, function, plain text or
any combination of those

Returns
value of anystring without new line characters (ASCII 13 and ASCII 10).

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBCNL example</title>

</head>

<body>

WBV:($wbv[test])

WBCNL:($WBCNL[$wbv[test]])

</body>

</html>

After running this example (e.g. using GET method:
http://localhost/WBCNL.wbsp?test=first line%0D%0Asecond line), the HTML code of
resulting page in browser, may look like this:

<html>

<head>

<title>WBCNL example</title>

</head>

<body>

WBV:(first line

second line)

WBCNL:(first linesecond line)

</body>

</html>

21.67.2 $WBCSTR - count string appearances

Availability
$WBCSTR is available for use with all WBSP commands.

Syntax
$WBCSTR{str1|str2|casesensitive}

$WBCSTR[str1|str2|casesensitive]

Parameters
str1 - string to be searched
str2 - string to search for

casesensitive - optional parameter - if set to true (T,ON,1) WhizBase will perform
case sensitive search (so "A" will not match "a")

Returns

A number (count) of appearances (instances) of str2 inside str1.

Example

<html>

 <body>

 Word whizbase in whizbase@whizbase.com repeats

$WBCSTR[whizbase@whizbase.com|whizbase] times.

 Word WhizBase in whizbase@whizbase.com repeats

$WBCSTR[whizbase@whizbase.com|WhizBase|T] times.

 </body>

</html>

Result:

Word whizbase in whizbase@whizbase.com repeats 2 times.

Word WhizBase in whizbase@whizbase.com repeats 0 times.

21.67.3 $WBFORMAT - format text

Availability
$WBFORMAT is available for use with all WBSP commands:

Syntax
$WBFORMAT{sourcetext|formatstring}

$WBFORMAT[sourcetext|formatstring]

Parameters
sourcetext - text to be formatted
formatstring - any valid named or user-defined format string.

Returns
The sourcetext formatted using formatstring

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBFORMAT example</title>

</head>

<body>

Original number: 123456789

Formatted number: $WBFORMAT[123456789|#,###.00]

> Original date: 12/7/08

Formatted date: $WBFORMAT[12/7/08|dd-mmmm-yyyy]

</body>

</html>

javascript:alert(%22Hyperlinks%20are%20disabled%20under%20Preview%20mode./n/nhref:%20namedFormats.html%22);
javascript:alert(%22Hyperlinks%20are%20disabled%20under%20Preview%20mode./n/nhref:%20userdefinedformats.html%22);

After running this example, the resulting page in browser, may look like this:

Original number: 123456789

Formatted number: 123,456,789.00

Original date: 12/7/08
Formatted date: 12-July-2008

21.67.4 $WBHE - HTML entity

Availability

$WBHE is available for use with all WBSP commands.

Syntax
$WBHE{sourcetext|validchars}

$WBHE[sourcetext|validchars]

Parameters
sourcetext - the text containing characters that should be converted to HTML entities
(&#number;)

validchars - the string containing characters that will not be replaced. If not
defined, default string is used. The default string contains upper and lower case
English alphabet characters, number characters, space, new line (ASCII 10) and

carriage return (ASCII 13)

Returns
The sourcetext with HTML entities instead of any character not in validchars list.

Example

<!--

[FormFields]

wb_command=R

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBHE</title>

</head>

<body>

These characters $wbhe[ßäëöü] will be replaced by HTML entities!

</body>

</html>

After running this example, the source code of a resulting page should look like this:

<html>

<head>
<title>WBHE</title>
</head>

<body>
These characters ßäëöü will be replaced by HTML
entities!

</body>

</html>

21.67.5 $WBINDOF - index of

Availability
$WBINDOF is available for use with all WBSP commands:

Syntax

$WBINDOF{texttobesearched|texttosearchfor|start}
$WBINDOF[texttobesearched|texttosearchfor|start]

Parameters
texttobesearched - text being searched

texttosearchfor - text sought
start - optional numeric parameter specifying the position inside texttobesearched to
begin search. If it does not exist, search begins at the beginning of the

texttobesearched.

Returns

Number specifying position of first occurrence of texttosearchfor inside
texttobesearched after start.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBINDOF example</title>

</head>

<body>

The word Spain starts at $WBINDOF[The rain in Spain stays mainly in

plains.|spain] position in sentence The rain in Spain stays mainly in

plains.

</body>

</html>

After running this example, the resulting page in browser, may look like this:

The word Spain starts at 13 position in sentence The rain in Spain stays mainly in

plains.

21.67.6 $WBLEFT - left substring

Availability

$WBLEFT is available for use with all WBSP commands:

Syntax
$WBLEFT{sourcetext|length}
$WBLEFT[sourcetext|length]

Parameters

sourcetext - text from which the leftmost characters are returned
length - numeric parameter indicating how many characters to return

Returns
Text containing a specified number (length) of characters from the left side of

sourcetext.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBLEFT example</title>

</head>

<body>

First 17 characters of sentence The rain in Spain stays mainly in

plains are:

$WBLEFT[The rain in Spain stays mainly in plains.|17]

</body>

</html>

After running this example, the resulting page in browser, may look like this:

First 17 characters of sentence The rain in Spain stays mainly in plains are:

The rain in Spain

21.67.7 $WBLEN - string length

Availability

$WBLEN is available for use with all WBSP commands:

Syntax
$WBLEN{sourcetext}
$WBLEN[sourcetext]

Parameters

sourcetext - text for which to count length

Returns

The number of characters in a sourcetext (length of the sourcetext)

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBLEN example</title>

</head>

<body>

The sentence The rain in Spain stays mainly in plains

has $WBLEN[The rain in Spain stays mainly in plains] characters.

</body>

</html>

After running this example, the resulting page in browser, may look like this:

The sentence The rain in Spain stays mainly in plains

has 40 characters

21.67.8 $WBLINDOF - last index of

Availability
$WBLINDOF is available for use with all WBSP commands:

Syntax

$WBLINDOF{texttobesearched|texttosearchfor|start}
$WBLINDOF[texttobesearched|texttosearchfor|start]

Parameters
texttobesearched - text being searched

texttosearchfor - text sought
start - optional numeric parameter specifying the position inside texttobesearched to
begin search. If it does not exist, search begins at the end of the texttobesearched.

Returns
Number specifying position (from the beginning of the texttobesearched) of first

occurrence of texttosearchfor inside texttobesearched, starting from the end of
texttobesearched or from start position, backwards.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBLINDOF example</title>

</head>

<body>

The last occurrence of word in is at $WBLINDOF[The rain in Spain stays

mainly in plains.| in] position in sentence The rain in Spain stays

mainly in plains.

</body>

</html>

After running this example, the resulting page in browser, may look like this:

The last occurrence of word in is at 31 position in sentence The rain in Spain stays

mainly in plains.

Please note that there are two spaces around word in used as the second parameter
of function $WBLINDOF. If you clear these spaces, function will return position 38,
because last occurrence of string in (without spaces around it) is in word plains.

21.67.9 $WBMID - substring at the specified location

Availability

$WBMID is available for use with all WBSP commands:

Syntax
$WBMID{sourcetext|start|length}
$WBMID[sourcetext|start|length]

Parameters
sourcetext - text from which the rightmost characters are returned
start - position inside sourcetext at which the part to be taken begins

length - numeric parameter indicating how many characters to return

Returns

Text containing a specified number (length) of characters starting from the start
position of sourcetext.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBMID example</title>

</head>

<body>

The 8 character substring of sentence The rain in Spain stays mainly in

plains starting at position 10 is:

$WBMID[The rain in Spain stays mainly in plains|10|8]

</body>

</html>

After running this example, the resulting page in browser, may look like this:

The 8 character substring of sentence The rain in Spain stays mainly in plains

starting at position 10 is:

in Spain

21.67.10 $WBMREPL - multi replace string

Availability
$WBMREPL is available for use with all WBSP commands:

Syntax

$WBMREPL{sourcetext|arrayofstringstobereplaced|arrayofstringstoreplacewith|separ
ator|casesensitive}
$WBMREPL[sourcetext|arrayofstringstobereplaced|arrayofstringstoreplacewith|separ

ator|casesensitive]

Parameters
sourcetext - text on which to perform the replacement
arrayofstringstobereplaced - an array of text elements to be searched for inside

sourcetext, separated by separator. It mush have same number of elements as
arrayofstringstoreplacewith
arrayofstringstoreplacewith - an array of text elements to replace for every

successful match of equivalent element of arrayofstringstobereplaced in sourcetext.
It mush have same number of elements as arrayofstringstobereplaced
separator - optional parameter that defines the separator character used to separate

elements of two array parameters. If omitted, a comma character (,) is used
casesensitive - optional parameter - if set to true (T,ON,1) WhizBase will perform
case sensitive search (so "A" will not match "a").

Returns
A copy of sourcetext with every occurrence of every element of

arrayofstringstobereplaced replaced by equivalent element of
arrayofstringstoreplacewith.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBMREPL example</title>

</head>

<body>

Original text: The rain in Spain stays mainly in plains.

Changed text: $WBMREPL[The rain in Spain stays mainly in

plains.|Spain,in plains,rain|France,on mountains,snow]

Example of changing decimal symbol and digit grouping character:

Original number: 1,451,345.67

Changed number: $wbmrepl[1,451,345.67|,-.-;|;-,-.|-]

</body>

</html>

After running this example, the resulting page in browser, may look like this:

Original text: The rain in Spain stays mainly in plains.

Changed text: The snow in France stays mainly on mountains.
Example of changing decimal symbol and digit grouping character:
Original number: 1,451,345.67

Changed number: 1.451.345,67

Please note that in second example (changing decimal symbol and digit grouping
character) we had to change the separator character to dash (-). You can also see
that elements are replaced by their order in the array. So, WhizBase first replaced all

commas (,) with semicolon (;). Then it replaced the full stop character (.) with
comma (,), and finally replaced semicolons (;) with full stop characters (.)

21.67.11 $WBREPL - replace string

Availability
$WBREPL is available for use with all WBSP commands:

Syntax

$WBREPL{sourcetext|stringtobereplaced|stringtoreplacewith|casesensitive}
$WBREPL[sourcetext|stringtobereplaced|stringtoreplacewith|casesensitive]

Parameters
sourcetext - text on which to perform the replacement

stringtobereplaced - text to be searched for inside sourcetext
stringtoreplacewith - text to replace for every successful match of stringtobereplaced
in sourcetext

casesensitive - optional parameter - if set to true (T,ON,1) WhizBase will perform
case sensitive search (so "A" will not match "a")

Returns
A copy of sourcetext with every occurrence of stringtobereplaced replaced by
stringtoreplacewith.

Example

[FormFields]

wb_command=r

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBREPL example</title>

</head>

<body>

Original text: The rain in Spain stays mainly in plains.

Changed text: $WBREPL[The rain in Spain stays mainly in

plains.|Spain|France]

</body>

</html>

After running this example, the resulting page in browser, may look like this:

Original text: The rain in Spain stays mainly in plains.

Changed text: The rain in France stays mainly in plains.

21.67.12 $WBRIGHT - right substring

Availability
$WBRIGHT is available for use with all WBSP commands:

Syntax
$WBRIGHT{sourcetext|length}

$WBRIGHT[sourcetext|length]

Parameters
sourcetext - text from which the rightmost characters are returned
length - numeric parameter indicating how many characters to return

Returns
Text containing a specified number (length) of characters from the right side of

sourcetext.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBRIGHT example</title>

</head>

<body>

Last 22 characters of sentence The rain in Spain stays mainly in plains

are:

$WBRIGHT[The rain in Spain stays mainly in plains|22]

</body>

</html>

After running this example, the resulting page in browser, may look like this:

Last 22 characters of sentence The rain in Spain stays mainly in plains are:

stays mainly in plains

21.67.13 $WBRXE - execute a regular expression

Availability

$WBRXE is available for use with all WBSP commands.

Syntax
$WBRXE{source|pattern|arrayname|global|ignorecase|showvar}
$WBRXE[source|pattern|arrayname|global|ignorecase|showvar]

Parameters

sourcetext - text on which to perform the search
pattern - regular expressions pattern
arrayname - the name of the array where elements will be stored and prefix for

array where positions will be stored (arrayname_pos).
global - optional parameter - a True/False value that indicates if a pattern should
match all occurrences in an entire sourcetext or just the first one

ignorecase - optional parameter - a True/False value that indicates if a pattern
search is case-sensitive or not
showvar - optional parameter - if set to true (T,ON,1) WhizBase will show the last

index (length-1) of resulting array

Returns
Number of elements in resulting array if showvar parameter is set to true, otherwise

it returns nothing, just creates the array.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

String: $wbsetv[rxstr|IS1 is2 IS3 is4|t]

Pattern: $wbsetv[rxp|is.|t]

Number of occurrences:

$wbsetv[MCount|$WBRXE[$wbgetv[rxstr]|$wbgetv[rxp]|match|t|t|t]|t]

$wbsetv[LCount|$wbcalc[$wbgetv[Mcount]-1]]

$wbwhile[$wbgetv[Lcount]>=0|

$wbgetv[match($wbgetv[LCount])] at position

$wbgetv[match_pos($wbgetv[LCount])]

$wbsetv[LCount|$wbcalc[$wbgetv[LCount]-1]]

]

</body>

</html>

After running this example, the resulting page in browser, may look like this:

String: IS1 is2 IS3 is4

Pattern: is.
Number of occurrences: 4
is4 at position 12

IS3 at position 8
is2 at position 4
IS1 at position 0

21.67.14 $WBRXR - regular expression replace

Availability

$WBRXR is available for use with all WBSP commands.

Syntax
$WBRXR{source|pattern|strtoreplacewith|global|ignorecase}
$WBRXR[source|pattern|strtoreplacewith|global|ignorecase]

Parameters

sourcetext - text on which to perform the replacement
pattern - regular expressions pattern
strtoreplacewith - text to replace for successful match

global - optional parameter - a True/False value that indicates if a pattern should
match all occurrences in an entire sourcetext or just the first one

ignorecase - optional parameter - a True/False value that indicates if a pattern
search is case-sensitive or not

Returns
A copy of sourcetext with every occurrence of pattern replaced by

stringtoreplacewith.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

Source text: Quick brown fox jumps over the lazy dog.

New text: $WBRXR[Quick brown fox jumps over the lazy dog.|fox|cat|t|t]

</body>

</html>

After running this example, the resulting page in browser, may look like this:

Source text: Quick brown fox jumps over the lazy dog.

New text: Quick brown cat jumps over the lazy dog.

21.67.15 $WBTRIM - removes both leading and trailing spaces

Availability
$WBTRIM is available for use with all WBSP commands:

Syntax

$WBTRIM{anystring}
$WBTRIM[anystring]

Parameters

anystring - any textual value that can be either WhizBase tag, function, plain text or
any combination of those

Returns
value of anystring without both leading and trailing spaces.

Example

<!--

[FormFields]

wb_command=r

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBTRIM example</title>

</head>

<body>

WBV:($wbv[test])

WBTRIM:($wbtrim[$wbv[test]])

</body>

</html>

After running this example (e.g. using GET method:
http://localhost/WBTRIM.wbsp?test=%20%20%20%20%20%20%20%20some
text), the HTML code of resulting page in browser, may look like this:

<html>

<head>

<title>WBTRIM example</title>

</head>

<body>

WBV:(some text)

WBTRIM:(some text)

</body>

</html>

21.68 Encryption functions

$WBDECRYPT
$WBENCRYPT

$WBHASH
$WBSXOR

21.68.1 $WBDECRYPT - decrypt encrypted string

Availability
$WBDECRYPT is available for use with all WBSP commands.

Syntax

$WBDECRYPT{AlgType|Key|data|InputType}
$WBDECRYPT[AlgType|Key|data|InputType]

Parameters

AlgType - algorithm type that will be used (must be the one used for original
encryption). Valid types are AES, AES192, AES256, BF (Blowfish), CAST, DES, RC2,
RC4, RC5, 3DES (TripleDES), UC (UNIXcrypt).

data - encrypted data to be decrypted
key - the string containing encryption key (must be exactly the same as one
used for original encryption)

InputType - optional parameter - defines the format of input data (the string to be
decrypted). Valid types are H for hexadecimal (default), T for text and B for Base64
encoded string.

Returns
Decrypted value of data. When decrypting data, you must use exactly the same
algorithm and key used for encryption! Different algorithms and/or different keys will

produce unusable results.

Example

<!--

[FormFields]

wb_command=R

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBDECRYPT</title>

</head>

<body>

Encrypted text:

xHBuQv8ae1vXCVA6/3/YCd5IUjL3lbnbzHDjlWt74fGfcNuS3osQtID1BMhepJI3

Encryption key: my secret word

Decrypted text: $WBDECRYPT[AES|my secret

word|xHBuQv8ae1vXCVA6/3/YCd5IUjL3lbnbzHDjlWt74fGfcNuS3osQtID1BMhepJI3|B

]

</body>

</html>

After running this example, the resulting page in browser should look like this:

Encrypted text:

xHBuQv8ae1vXCVA6/3/YCd5IUjL3lbnbzHDjlWt74fGfcNuS3osQtID1BMhepJI3

Encryption key: my secret word
Decrypted text: this is text to be encrypted

21.68.2 $WBENCRYPT - encrypt a string

Availability

$WBENCRYPT is available for use with all WBSP commands.

Syntax
$WBENCRYPT{AlgType|Key|data|OutputType}
$WBENCRYPT[AlgType|Key|data|OutputType]

Parameters

AlgType - algorithm type that will be used. Valid types are AES, AES192, AES256, BF
(Blowfish), CAST, DES, RC2, RC4, RC5, 3DES (TripleDES), UC (UNIXcrypt).
data - the string to be encrypted

key - the string containing encryption key
OutputType - optional parameter - defines the output format. Valid types are H for
hexadecimal (default), T for text and B for Base64 encoded string.

Returns

The encrypted value of data formated as hexadecimal value, text or Base64 encoded
string. When you want to decrypt data, you must use exactly the same algorithm

and key! Different algorithms and/or different keys will produce completely different
encryption results.

Example

<!--

[FormFields]

wb_command=R

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBENCRYPT</title>

</head>

<body>

Original text: this is text to be encrypted

Encryption key: my secret word

Encrypted text: $WBENCRYPT[AES|my secret word|this is text to be

encrypted|B]

</body>

</html>

After running this example, the resulting page in browser should look like this:

Original text: this is text to be encrypted

Encryption key: my secret word
Encrypted text:

xHBuQv8ae1vXCVA6/3/YCd5IUjL3lbnbzHDjlWt74fGfcNuS3osQtID1BMhepJI3

21.68.3 $WBHASH - calculate hash/digest

Availability

$WBHASH is available for use with all WBSP commands.

Syntax
$WBHASH{AlgType|data|OutputType}
$WBHASH[AlgType|data|OutputType]

Parameters

AlgType - algorithm type that will be used. Valid types are MD5, SHA1, SHA256,
SHA384, SHA512.
data - the string to be digested

OutputType - optional parameter - defines the output format. Valid types are H for

hexadecimal (default), T for text and B for Base64 encoded string.

Returns
The hash/digest value of string formated as hexadecimal value, text or Base64
encoded string.

Example

<!--

[FormFields]

wb_command=R

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBHASH</title>

</head>

<body>

Original text: this is text to be digested

MD5 Hash: $WBHASH[MD5|this is text to be digested|B]

</body>

</html>

After running this example, the resulting page in browser should look like this:

Original text: this is text to be digested

MD5 Hash: GlFJb6uRzUC7MeLUBLdVzg==

21.68.4 $WBSXOR - simple XOR encryption/decryption

Availability

$WBSXOR is available for use with all WBSP commands.

Syntax
$WBSXOR{key|data}
$WBSXOR[key|data]

Parameters

key - the string containing encryption key
data - the string to be encrypted or decrypted

Returns
The XOR encrypted or decrypted string. XOR Encryption is the simplest stream cipher

also called the Vernam cipher. The function XORs every data character with
appropriate character of the key. The process is exactly same for encryption as well
as decryption. With short keys Vernam or XOR Ciphers turn out to be easy to break.

Still it is often used by some service providers to encrypt form data sent from web
page.

Example

<!--

[FormFields]

wb_command=R

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>WBSXOR</title>

</head>

<body>

Encrypted text: $WBSETV[enctext|$WBSXOR[myshortkey|This is plain, clear

text]|T]

Decrypted text: $WBSXOR[myshortkey|$WBGETV[enctext]]

</body>

</html>

After running this example, the resulting page in browser should look like this:

Encrypted text: 9 O K DO M

Decrypted text: This is plain, clear text

22. Variables

WhizBase variables are divided in five sections - FormFields, MsgAndLbl, Upload,

Referrer Check and UserData. There is also a special section for user-defined error
messages - ErrorMessages section.
Variables from UserData section can be read only by using WhizBase functions

$WBRV, $WBRRV, $WBGV and $WBGS .
Not every WBSP document has to have all of these sections defined, but only those
that are really needed for specific task (e.g. you do not put Upload section in WBSP

file that will not accept any uploaded files).
Although these sections can be located anywhere in WBSP document and they do not

have to be placed together, we strongly recommend to place these sections at
the top of the file and to separate them from rest of the report template using <!--
WB_BeginTemplate--> comment, or, at least, to enclose these sections in a

comment tags (use appropriate tags for every content type - <!-- --> for HTML, /*
*/ for JavaScript, etc.).
Commands starting with WB_ are called WhizBase variables, which are processed at

start, BEFORE opening the database and/or processing the WBSP tags and functions.
All variables can contain WhizBase tags and functions in their input syntax (syntax
with braces - {}), and some variables can contain WhizBase tags and functions in

report syntax (syntax with square brackets - []).
Functions in input syntax are processed when WB reads the variable, and those in
report syntax (where applicable) are processed when WB builds the report.

Variables that can use WhizBase tags and functions in report syntax contain proper
syntax example.

Important: To set the value of a single variable for entire site (e.g.
WB_ShowLogo=F), put the variable definition in proper section of the file default.inc

located in web sites document root directory. In the same way you can define value
of a variable for entire directory (and all its subdirectories) by putting the variable
definition in proper section of the file default.inc located in that directory.

22.1 FormFields variables - Subsection [FormFields]

This subsection contains the variables that are essential for processing WBSP file.

Here you put information about the database, recordset, template, error template,
log file, redirection, etc.
These are the variables that can be stored in FormFields subsection (in alphabetic

order):
WB_AddCookie
WB_AddJoker

WB_AllowMultipart
WB_AndOr
WB_AppendMode

WB_Attach
WB_AttachField

WB_BaseName
WB_BCC
WB_BCCField

WB_CC
WB_CDate
WB_ChangeHFOn

WB_Command
WB_Connect
WB_ContentType

WB_DBAddData
WB_DBAdmin
WB_DBDelData

WB_DBEditData
WB_DBFlds
WB_DBGroup

WB_DBLock
WB_DBModDes
WB_DBNewPass

WB_DBNPassCh
WB_DBObject
WB_DBOldPass

WB_DBReadData
WB_DBReadDes
WB_DBUser

WB_Debug
WB_Defaults

WB_Destination
WB_ErrFile
WB_ErrMail

WB_ExactCount
WB_Exclusive

WB_Execute
WB_FileName
WB_Forced

WB_From
WB_FULID
WB_Group

WB_Having
WB_HideLogin
WB_HTTPHeader

WB_InsBR
WB_KeyName
WB_KeyValue

WB_LCID
WB_Log
WB_LogData

WB_LogTemp
WB_MailPort
WB_MailServer

WB_MatchCase
WB_MaxPages
WB_MaxRec

WB_MQ
WB_Null

WB_Order
WB_Pass

WB_PID
WB_Predicate
WB_Query

WB_RcdSet
WB_ReadOnly

WB_Redirect
WB_Required
WB_Section

WB_Separator
WB_SetADOCompatible
WB_ShowEmpty

WB_ShowLogo
WB_StartRec
WB_Subject

WB_System
WB_SysVarByForm
WB_TempName

WB_TimeOut
WB_To
WB_ToField

WB_UID
WB_Unicode
WB_UniFTS

WB_UserData
WB_Usr
WB_ValDelimiter

WB_WC
WB_WholeWord

Here's an example of FormFields section (marked blue):
[FormFields]

WB_basename=biblio.mdb

wb_rcdset=publishers

WB_Command=Q

wb_showlogo=F

wb_order=name

<!--WB_BeginTemplate-->

<html>

<head>

<title>Publishers</title>

</head>

<body bgcolor="#ffffff" leftmargin="0" topmargin="0" marginwidth="0"

marginheight="0">

<!--WB_BeginDetail-->

<span style="font-family:Verdana;font-size:14px;font-

weight:bold;color:#0066cc;">$wbf[Name]

$wbsr[titles.sr]

<!--WB_EndDetail-->

</body>

</html>

22.1.1 WB_AllowMultipart - accept uploaded files

Syntax
WB_AllowMultipart=boolean value

Syntax example
WB_AllowMultipart= T

Valid inputs

T,TRUE,1,ON for True
F,FALSE,0,OFF for False

Default value
FALSE

Description

This variable controls if the current WBSP page will accept uploaded files (sent by
client using multipart form). If this variable is set to TRUE WhizBase will accept and
process uploaded files. If it is set to FALSE, and WBSP page receives multipart form

data, the error will be generated.

22.1.2 WB_AppendMode - append report to existing file

Syntax
WB_AppendMode=boolean value

Syntax example

WB_AppendMode=T

Valid inputs
T,TRUE,1,ON for True
F,FALSE,0,OFF for False

Default value

FALSE

Description
This variable controls if WBSP engine will overwrite (default -
WB_AppendMode=False) the destination file defined in variable WB_Destination or

new content will be appended to the existing file (WB_AppendMode=True). The
variable is ignored by WhizBase if WB_Destination is not defined (empty).

22.1.3 WB_Command - the action to be performed by WhizBase

Syntax

WB_Command=command

Syntax example
WB_Command= Q

Valid inputs

R Render Database administration

Q Query
(available with MS Access databases
only)

A Add AU Add DB user or group

D Delete DU Delete DB user or group

U &

MU

Update & Multi

update
 AG Add DB user to group

T Test DG Delete DB user from group

SF Send file SP Set DB permissions

P Personalized email RP Read DB permissions

L
Mail to list of
recipients

 CD Compact database

DF Delete file CP Change DB password

WF Write to file

Default value
R

Description
This variable defines which WhizBase command (operation) will be executed by
current WBSP page. This variable is one of the most important configuration

elements in WhizBase so we will explain every value separately)please follow the
links in the tables above.

22.1.3.1 Add - A

Description
This command is used for adding the new records to the database. When executed, it

opens the recordset (variables WB_BaseName and WB_RcdSet must be defined
when you use this command), adds the record(s) and displays processed WBSP page

or redirects client to URL defined in WB_Redirect variable.

Note: If WBSP page with command A receives form data for more than one record,
it will add all the records received. In this case WhizBase requires arrays of WBF_
fields with equal number of members (e.g. if you are adding 3 fields for 4 records

you MUST send four sets of WBF_field1, WBF_fied2 and WBF_field3 form fields).

22.1.3.2 Add DB user or group - AU

Description

This command is used for adding specified user (WB_DBUser) or specified group
(WB_DBGroup) to workgroup file (WB_System). The result can be displayed
using $WBAdmin[] tag.

22.1.3.3 Add DB user to group - AG

Description

This command is used for adding specified user (WB_DBUser) to specified group
(WB_DBGroup) in workgroup file (WB_System). The result can be displayed
using $WBAdmin[] tag.

22.1.3.4 Change DB user password - CP

Description
This command is used for setting a new password for specified user (WB_DBUser) in
workgroup file (WB_System), using old password value (WB_DBOldPass) and new

password value (WB_DBNewPass) that can be verified using control password value
(WB_DBNPassCh). The result can be displayed using $WBAdmin[] tag.

22.1.3.5 Compact database - CD

Description
This command is used for compacting MS Access database *.MDB file.

Variable WB_BaseName is required.

22.1.3.6 Delete - D

Description
This command is used for deleting the records from the database. When executed, it

opens the recordset (variables WB_BaseName and WB_RcdSet must be defined
when you use this command), deletes all records in the selected recordset and
displays processed WBSP page or redirects client to URL defined in WB_Redirect

variable.

Important: Delete command can and will permanently delete all the records that
match the condition. We strongly recommend you to password-protect either your
database (using MS Access system.md? file) or the WBSP page containing this

command (using WB_HTAccess). To disable deletion of more than one record at the
time define the WB_UID variable in WBSP page containing the DELETE command.

22.1.3.7 Delete DB user from group - DG

Description

This command is used for deleting specified user (WB_DBUser) from specified group
(WB_DBGroup) in workgroup file (WB_System). The user will not be deleted
from workgroup file, but simply will not be a member of the group. The

result can be displayed using $WBAdmin[] tag.

22.1.3.8 Delete DB user or group - DU

Description

This command is used for deleting specified user (WB_DBUser) or specified group
(WB_DBGroup) from workgroup file (WB_System). The result can be displayed
using $WBAdmin[] tag.

22.1.3.9 Delete file - DF

Description

This command is used for irreversibly deleting file specified in variable WB_FileName.
The file will not be sent to recycle bin, but deleted permanently.

22.1.3.10 Mail to list of recipients - L

Description

This command is used for sending WBSP page to email recipient(s) using SMTP mail
server defined in variable WB_MailServer. Depending on variable used for defining
email address the report template will be processed differently.

If email address is defined in WB_BCCField report template will be processed once
and the (same) result will be sent to all recipients. The email addresses will be set as
BCC so no recipient will see the email addresses of other recipients. The mail server

will be contacted once and a single mail with many BCC addresses will be sent.
Please note that some mail servers limit the maximum number of recipients for a
single mail.

If email address is defined in WB_ToField report template will be processed as many
times as there is records in recordset (once per record) and the result will be sent to
single recipient every time, which means that mail server will be contacted once for

every recipient.
If there are any attachments defined in WB_Attach or WB_AttachField variables, they
will also be sent.

The defined recordset (using WB_BaseName, WB_RcdSet and WB_Query) will be
opened same as with Query command, and all database related functions will be
processed too.

22.1.3.11 Multi update - MU

Description

This command is used for updating the multiple records with same field value(s).
Unlike Update command that requires arrays of WBF_ fields with equal number of
members (e.g. if you update 1 field for 4 records you MUST send four sets of

WBF_field1 (WB_UID member) and WBF_fied2 form fields), multi update command
accept an array of WBF_field ONLY for fields defined in WB_UID. Upon receiving the
WB_UID members as an array of WBF_field it will create the recordset and modify

the content of all selected records with SAME value(s).

e.g.
Original table values

ID (WB_UID
field)

Title Show

1
McGraw-Hill's Encyclopedia of Networking &
Telecommunications

True

2 Microsoft SMS Installer True

3 Windows 2000 Iis 5.0 : A Beginner's Guide True

4 Windows Nt Security Handbook True

Table values after Update command
(wbf_id=1&wbf_Show=False&wbf_id=2&wbf_Show=True&wbf_id=3&wbf_Show=Fal
se&wbf_id=4&wbf_Show=True)

ID (WB_UID

field)
Title Show

1
McGraw-Hill's Encyclopedia of Networking &
Telecommunications

False

2 Microsoft SMS Installer True

3 Windows 2000 Iis 5.0 : A Beginner's Guide False

4 Windows Nt Security Handbook True

Table values after Multi update command

(wbf_Show=False&wbf_id=1&wbf_id=2&wbf_id=3&wbf_id=4)

ID (WB_UID
field)

Title Show

1
McGraw-Hill's Encyclopedia of Networking &
Telecommunications

False

2 Microsoft SMS Installer False

3 Windows 2000 Iis 5.0 : A Beginner's Guide False

4 Windows Nt Security Handbook False

22.1.3.12 Personalized email - P

Description
This command is used for sending WBSP page to email recipient(s) using SMTP mail
server defined in variable WB_MailServer. The report template will be processed and

the (same) result will be sent to all recipients defined in WB_To, WB_CC and
WB_BCC variables together with attachments defined in WB_Attach variable (if it

exists). If WBSP defines recordset (using WB_BaseName, WB_RcdSet and
WB_Query) it will be opened same as with Query command, and all database related
functions will be processed too.

22.1.3.13 Query - Q

Description

This command is used when you need to access the database recordset for reading
the records. When executed, it opens the recordset (variables WB_BaseName and
WB_RcdSet must be defined when you use this command), processes all WhizBase

tags and functions that exist in the page, repeating the detail section as many times
as there is records in the page (this is defined by the value of the WB_MaxRec
variable). When it builds the recordset, this command will use WB_Query variable

together with WBF_recordsetfieldname form fields to generate SQL WHERE clause.
To learn more about variables used for generating recordset, please read the
"Recordset" page.

Important: If your WBSP page displays only one record, and you are positive that
there is more records in recordset, and that you have placed <!--WB_BeginDetail-->
and <!--WB_EndDetail--> properly, then it very possible that you have forgot to set

WB_Command to Q and that your WBSP page executes RENDER command.

22.1.3.14 Read DB permissions - RP

Description
This command is used for reading access permissions on database (WB_BaseName)
table (WB_RcdSet) for specified user (WB_DBUser) or group (WB_DBGroup) in

workgroup file (WB_System). The result can be displayed using $WBAdmin[]
tag.

22.1.3.15 Render - R (default)

Description
This is a default command (e.g. WBSP page with no configuration section or with no

WB_Command value will execute RENDER command). When executed, it processes
all WhizBase tags and functions that exist in the page. If database related variables
are defined, this command will open the recordset, but it will display only first

record of the recordset.

Important: If your WBSP page displays only one record, and you are positive that
there is more records in recordset, and that you have placed <!--WB_BeginDetail-->
and <!--WB_EndDetail--> properly, then it is very possible that you have forgot to

set WB_Command properly (to Q, P or L) and that your WBSP page executes
RENDER command.

22.1.3.16 Send file - SF

Description
This command is used for sending unchanged file defined in variable

WB_TempName to client. The file will not be processed or changed in any way,
regardless of its content or type.

22.1.3.17 Send SMS - SMS

Description
This command is used for sending WBSP page to SMS recipient(s) using SMS modem

or mobile phone connected to computer's COM port (defined in WB_SMSPort) using

cable, Infrared device or Bluetooth connection. The report template will be processed

and the result will be sent to recipient defined in WB_SMSNumber . If WB_SMSField
is defined, the WB_SMSNumber will be ignored, and WhizBase will use content of the
defined database field as recipient's SMS number. It will process the report template

for every record separately and send it to the corresponding recipient's SMS number.

22.1.3.18 Set DB permissions - SP

Description
This command is used for setting access permissions on database (WB_BaseName)
table (WB_RcdSet) for specified user (WB_DBUser) or group (WB_DBGroup) in

workgroup file (WB_System). The permissions are set using True/False flags in
variables WB_DBAddData, WB_DBAdmin, WB_DBDelData, WB_DBEditData,

WB_DBModDes, WB_DBReadData, WB_DBReadDes. The result can be displayed
using $WBAdmin[] tag.

22.1.3.19 Test - T

Description
This command is used for generating test report. To learn more, please read the

"Test mode" page.

22.1.3.20 Update - U

Description
This command is used for updating the record(s). When executed, it opens the

recordset (variables WB_UID, WB_BaseName and WB_RcdSet must be defined when
you use this command), changes the record(s) and displays processed WBSP page or
redirects client to URL defined in WB_Redirect variable.

Important: If WBSP page with command U receives form data for more than one

record, it will update all the records received. In this case WhizBase requires arrays
of WBF_ fields with equal number of members (e.g. if you update 1 field for 4
records you MUST send four sets of WBF_field1 (WB_UID member) and WBF_fied2

form fields). For more info on updating more records at once please also read Multi
update command. We strongly recommend you to password-protect either your
database (using MS Access system.md? file) or the WBSP page containing this

command (using WB_HTAccess). WB_UID variable in WBSP page containing the
UPDATE command defines the name of recordset field that has a unique value for
every single record. If recordset for single WBF_UIDfieldname form field value

returns more than one record the error will be generated.

22.1.3.21 Write to file - WF

Description
This command is used for adding, changing and deleting key values in configuration

file specified in variable WB_FileName, belonging to section specified in WB_Section
variable.

22.1.4 WB_Config

This variable does not exist in WBSP engine (WhizBase version 4 and above),

because the WBSP page itself is the configuration file.

22.1.5 WB_Defaults - set the default values for request variables

Syntax
WB_Defaults=field pairs

Syntax example
WB_Defaults=wbf_expires=$wbfn{date},wbf_user=$wbfn{htuser}

Valid inputs

Any list of pairs in formatfieldname=value,fieldname1=value1,...

Default value
None

Description

This variable contains field pairs (in format fieldname=fieldvalue) separated by
character(s) defined in variable WB_ValDelimiter, that will be used to provide the
value(s) for defined field(s) if user does not enter any data for that fields in HTML

form. This variable cannot be set by HTML form.

22.1.6 WB_Destination - set the file name for saving the output

Syntax
WB_Destination=file name of the destination file

Syntax example
WB_Destination=current.txt

Valid inputs

Any valid file name respecting WhizBase path rules

Default value
none

Description
This variable contains the file name of the file to be used as destination file for

saving the output of the WBSP file instead of sending the result to the HTTP client.
This variable can be used with all WB_Command values and in all cases it requires
that WB_Redirect variable is also defined. If this variable contains proper file name,

WhizBase will process WBSP file and save (or append depending upon value of
WB_AppendMode variable) the resulting code (everything below <!--
WB_BeginTemplate-->) to file defined in WB_Destination. After this HTTP client will

be redirected to the URL defined in WB_Redirect variable.

22.1.7 WB_Forced - force values for request variables

Syntax

WB_Forced=field pairs

Syntax example
WB_Forced=wbf_expires=$wbfn{date},wbf_user=$wbfn{htuser}

Valid inputs
Any list of pairs in formatfieldname=value,fieldname1=value1,...

Default value

None

Description
This variable contains field pairs (in format fieldname=fieldvalue) separated by

character(s) defined in variable WB_ValDelimiter, that will be used to replace the
value(s) for defined field(s) even if user provides the data for that fields using
any valid or invalid (even illegal) method. This variable cannot be set by HTML

form.

22.1.8 WB_FULID - generate unique form upload ID

Syntax
WB_FULID=boolean value

Syntax example
WB_FULID= T

Valid inputs

T,TRUE,1,ON for True
F,FALSE,0,OFF for False

Default value
FALSE

Description

If this variable is set to TRUE, the WhizBase will generate server-side unique form
upload ID, that can be retrieved on the same WBSP page using $WBFULID tag.
This variable together with tag $WBFULID and functions $WBFUP and $WBFUT is

used for tracking the form upload progress using AJAX or IFRAME. Generated value
will be deleted when upload finishes. This variable should be set in a WBSP page
containing upload form.

22.1.9 WB_HideLogin - scramble login data in navigation URL

Syntax

WB_HideLogin=boolean value

Syntax example
WB_HideLogin= F

Valid inputs

T,TRUE,1,ON for True
F,FALSE,0,OFF for False

Default value
TRUE

Description

This variable controls if WBSP engine will encode values for database access login
variables WB_Usr and WB_Pass in navigation links (Next page, Previous page, etc.).
If this variable is set to FALSE, WBSP will pass values for WB_Usr and WB_Pass

without any changes so they will be visible in browser's address bar. This variable
cannot be set by HTML form.

22.1.10 WB_Required - list of required request variables

Syntax

WB_Required=comma separated list of required form field names

Syntax example
WB_Required= WBF_name,WBF_phone,WBF_email

Valid inputs
comma separated names of required form fields that exist in form that sends the

data to the current WBSP page

Default value
none (no form fields are required)

Description
This variable controls if the current WBSP page has received all required form fields

with GET or POST request generated by HTML form that called the WBSP page. If
any of the form fields defined in WB_Required list is empty (does not contain any
data), or does not exist, the error will be generated, even if that variable exists

in WBSP page itself. The list can contain name of any existing form filed (not only
WB_ and WBF_ fields) that is required by current WBSP page for any reason.

22.1.11 WB_ShowLogo - display powered by WhizBase logo

Syntax
WB_ShowLogo=boolean value

Syntax example

WB_ShowLogo= F

Valid inputs
T,TRUE,1,ON for True
F,FALSE,0,OFF for False

Default value

TRUE

Description

This variable controls if the current WBSP page will display the "Powered by
WhizBase" logo at the bottom of every WBSP page. To hide logo set this variable to
FALSE.

22.1.12 WB_SysVarByForm - allow system variables (wb_) set as request

variables (by form)

Syntax
WB_SysVarByForm=boolean value

Syntax example
WB_SysVarByForm= F

Valid inputs

T,TRUE,1,ON for True
F,FALSE,0,OFF for False

Default value

TRUE

Description
This variable controls if the current WBSP page will accept WhizBase variables (with
name starting with WB_) sent by client using HTML form. If this variable is set to

FALSE WhizBase will not accept any form field with name starting with WB_. If you
want to disable WB_ form fileds for most of the system variables, but not all, add
variables for which you want to enable form fields to proper section of default.inc file

in document root directory and set their value to $form$.

22.1.13 WB_TempName - report template file name

Syntax
WB_TempName=file name of the report template

Syntax example
WB_TempName= bibliotable.htm

Valid inputs

Any valid file name respecting WhizBase path rules and special values $default$,
$self$ and $form$

Default value
none (WBSP page itself, all code below <!--WB_BeginTemplate--> comment will be

used as report template)

Description
This variable contains the file name of the file to be used by WhizBase as template
for generating output (report). This variable is mostly used with SF command

because in most other cases WBSP file (page) itself contains the template located
below <!--WB_BeginTemplate--> comment. However, it is very useful when
Content-type of the output is not text/html or text/plain, or when single

configuration section is used for various outputs. If special values are used their
functions are:

$default$ WhizBase will generate the default report page with all

fields from recordset included in it, just as if you used
$wbdetail function. For recordsets having more than 5
fields it will return columnar report, and for others the

returned report will be in tabular format.

$form$ Use this value if you, for any reason, want to allow your
visitor to choose report template file (using POST or GET

method and form fields) when accepting system variables
from HTML form is disabled (WB_SysVarsByForm=False).

$self$ Use this value to force WBSP page to use itself as report
template, and to avoid accepting the value for this variable

from HTML form field, even when accepting system
variables from HTML form is not disabled
(WB_SysVarsByForm=True).

22.1.14 WB_TimeOut - set script time-out interval

Syntax

WB_TimeOut=number of seconds

Syntax example
WB_TimeOut= 60

Valid inputs
Any number in range 0-86400 (0 - no time out - not recomended)

Default value

Value of ScriptTimeOutSec server configuration variable

Description
This variable defines the maximum number of seconds that WBSP engine will wait for
WBSP file to execute before it terminates the execution and generates the error.

Counting starts after WhizBase receives all form data from client (to prevent timeout
error due to slow client connection and file upload).

22.1.15 WB_UseEscapes - use escape sequences for special WB characters

Syntax
WB_UseEscapes=boolean value

Syntax example
WB_UseEscapes= T

Valid inputs
T,TRUE,1,ON for True

F,FALSE,0,OFF for False

Default value
FALSE

Description
This variable controls if the current WBSP page is using escape characters. If this

variable is set to TRUE WhizBase will search the page for escape characters and

replace them with proper content.

22.1.16 WB_UserData - user defined content

Important: WB_UserData will not be processed if placed in configuration section of
sub report file.

Syntax
WB_UserData=any user defined value

Syntax example

WB_UserData=$wbtimer

Valid inputs
Any text and/or numeric value including WhizBase tags and functions

Default value

none

Description
This variable has no effect on the execution of WBSP page by itself. However since it
will be processed as any other WBSP system variable at the beginning of the session

and its value can be read using $wbfn[userdata] it can be very useful. For example it
can be used to get the system time on the beginning of the session (using $wbtimer
tag) and to be compared to the system time on the end of the WBSP report to

measure time needed for report to complete.

22.1.17 WB_ValDelimiter - delimiter for wb_defaults and wb_forced

Syntax
WB_ValDelimiter=delimiter string

Syntax example
WB_ValDelimiter= ;

Valid inputs

Any valid string

Default value
, (comma)

Description
This variable controls which character(s) will be used to separate field pairs in

WB_Defaults and WB_Forced variables. This variable can not be set by HTML
form.

22.1.18 Access control

WhizBase controls page access using both IP filtering (WB_IPListFile) and user's

credentials (WB_HTAccess, WB_HTUsr, WB_HTPass).

22.1.18.1 HTAccess File - configuration file for authentication

HTAccess file is ordinary ASCII text file that contains WhizBase variables
WB_AuthType, WB_Realm, WB_Scramble and WB_LoginPage and
username/password pairs, organized by following structure:

[Authentication]

WB_AuthType=type (valid settings B-Basic, C-Cookie)

WB_LoginFile=filename (ignored if WB_AuthType=B)

WB_Realm=Realm

[AuthUsers]

username=password

username1=password1

...

usernameN=passwordN

For security reasons we strongly recommend to use wbsp extension for HTAccess file
and to add WB_Command=R and <!--WB_BeginTemplate--> in it.

e.g.
[FormFields]

WB_Command=R

[Authentication]

WB_HTAccess=C

WB_LoginFile=/login.htm

[AuthUsers]

username=password

username1=password1

<!--WB_BeginTemplate-->

<html><body>

You can not read content of this file!

</body></html>

You can also use aut extension and set the server to handle files with that extension
by WBSP and do not change HiddeDocuments SSC variable, or you can place
HTAccess file above wwwroot directory and use absolute path. For this you have to

change AbsolutePath SSC variable.

22.1.18.1.1 WB_AuthType - authentication method

Syntax

WB_AuthType=any valid WBSP constant

Syntax example
WB_AuthType=C

Valid inputs

This variable accepts following WBSP constants:

 C - cookie authentication

 B - basic authentication
 D - Digest authentication

Default value
B

Description

This variable defines authentication method that will be used. Its value can be set
only in HTAccess file in section [Authentication] and valid values are B for basic
authentication, D for digest authentication and C for server-side cookie

authentication. Basic authentication is default, but some servers do not support it or
they require additional configuration. Cookie authentication method is supported by

all web servers.

This variable cannot be set by HTML form.

22.1.18.1.2 WB_LoginPage - file name of login page for cookie authentication

Syntax

WB_LoginPage=file name of the WBSP file

Syntax example
WB_LoginPage=/login/login.WBSP

Valid inputs

Any valid file name respecting WhizBase path rules

Default value
none

Description
defines file that will be used for login with cookie authentication method. If this value

is not specified WBSP will generate default login page. If specified file does not exist
WBSP will generate an error.
Login page is ordinary HTML file containing form where user can enter two variables

WB_HTUsr and WB_HTPass.
Form action should be set to $wbe[script_name], so user will be transferred to
requested page once the login data are processed.

Here is an example:

<form method='post' action='$wbe[script_name]'>

User name:<input type='text' name='WB_HTUsr'>

Password:<input type='password' name='wb_htpass'>

<input type='submit' name='sButt' value='Login'>

</form>

This variable cannot be set by HTML form.

22.1.18.1.3 WB_Realm - realm for basic and digest authentication

Syntax

WB_Realm=realm

Syntax example
WB_Realm=Members area

Valid inputs
Any alphanumeric string

Default value

WBSP Login

Description
This variable contains realm value for WBSP basic and digest authentication. Its
value can be set only in htaccess file in section [Authentication].

This variable cannot be set by HTML form.

22.1.18.1.4 WB_Scramble - scramble (hide) password(s) stored in htaccess file

Syntax

WB_Scramble=boolean value

Syntax example
WB_Scramble=T

Valid inputs
T,TRUE,1,ON for True

F,FALSE,0,OFF for False

Default value
FALSE

Description
This variable controls if the WhizBase will scramble the passwords in AuthUsers

section of the htaccess file upon user's first login. To make passwords unreadable set
this variable to TRUE. Its value can be set only in htaccess file in section

[Authentication].

This variable cannot be set by HTML form. The scrambled passwords will
remain valid even if you set this variable to FALSE later, but no new (or
changed) password will be scrambled until you set it back to TRUE.

22.1.18.2 WB_HTAccess - location of configuration file for authentication

Syntax

WB_HTAccess=file name of the HTAccess file

Syntax example
WB_HTAccess=/login/users.aut

Valid inputs

Any valid file name respecting WhizBase path rules

Default value
none

Description
This variable is used to engage Authentication procedure using

usernames/passwords contained in specified file. Authentication can be either WWW-
Authentication Basic or based on server-side cookies. This variable must be set in all
WBSP files that need to be protected, either in a file itself or in include file. To

protect entire directory set WB_HTAccess value in default.inc file in that directory. To
protect entire site set WB_HTAccess in default.inc located in wwwroot directory.

Some web servers will not support WBSP Basic authentication because they process
WWW_Authenticate field sent by browser before it reaches WBSP engine. In that
cases cookie authentication type should be used.

This variable cannot be set by HTML form.

22.1.18.3 WB_HTPass - authentication password

Syntax

WB_HTPass=user password

Syntax example
<input type="password" name="WB_HTPass" size="20">

Valid inputs
Any alphanumeric string

Default value

none

Description
This variable contains password for WBSP authentication using HTAccess file. Its
value is case sensitive.

This value cannot be set in any WBSP file. WBSP will accept it only from

HTML form.

22.1.18.4 WB_HTUsr - authentication user name

Syntax
WB_HTUsr=user name

Syntax example
<input type="text" name="WB_HTUsr" size="20">

Valid inputs

Any alphanumeric string

Default value
none

Description

This variable contains user name for WBSP authentication using HTAccess file. Its
value is not case sensitive.

This value cannot be set in any WBSP file. WBSP will accept it only from
HTML form.

22.1.18.5 WB_IPListFile - location of file containing list of (dis)allowed IP

address ranges

Syntax
WB_IPListFile=file name of the IPList file

Syntax example
WB_IPListFile=/AcceptIP.aut

Valid inputs
Any valid file name respecting WhizBase path rules

Default value
none

Description

This variable is used to engage Authentication procedure using IP address of remote
computer and list of IP ranges contained in specified file. IPList file is ordinary ASCII
text file with single IP range per line.

Here is an example:

192.168.*.*

216.191.90.144

10.0.0.0-10.0.127.255

192.168.0.0/16

As you can see from example above, IPList file contains list of valid IP address
ranges what means that WBSP will serve WBSP files only to users with IP address in
specified range. If you want to block access for IP addresses in IP ranges specified
in IPList file, then add exclamation mark preceding file name in WB_IPListFile

like in following example:

WB_IPListFile=IPrange.aut (this will allow access only to users with IP

address in range(s) specified in file IPrange.aut)

WB_IPListFile= !IPrange.aut (this will allow access to all users except

those with IP address in range(s) specified in file IPrange.aut)

Please note that in both cases actual file name is the same IPrange.aut

This variable must be set in all WBSP files that need to be protected. It can be set
either in a file itself or in include file. To protect entire directory set WB_IPListFile
value in default.inc file in that directory. To protect entire site set WB_IPListFile in

default.inc located in wwwroot directory.

This variable cannot be set by HTML form.

22.1.19 Database

These variables are used for configuring database-related parameters.

WB_AddJoker

WB_AndOr
WB_BaseName
WB_CDate

WB_ChangeHFOn
WB_Connect
WB_DBFlds

WB_DBLock
WB_DBObject
WB_ExactCount

WB_Exclusive
WB_Execute
WB_Group

WB_Having

WB_InsBr

WB_LCID
WB_MatchCase
WB_MaxPages

WB_MaxRec
WB_MQ
WB_Null

WB_Order
WB_Pass
WB_Predicate

WB_Query
WB_RcdSet

WB_ReadOnly

WB_SetADOCompatible
WB_ShowEmpty
WB_StartRec

WB_System
WB_UID
WB_Unicode

WB_UniFTS
WB_UniQS
WB_Usr

WB_WC
WB_WholeWord

Recordset field value container: WBF_field

22.1.19.1 WB_AddJoker - position of automatically added wildcards

Syntax

WB_AddJoker=any valid WBSP constant

Syntax example
WB_AddJoker=N

Valid inputs
This variable accepts following WBSP constants:

 S - add wildcard at the beginning of the word

 E - add wildcard at the end of the word
 N - wildcard will not be added
 B - add wildcard to both ends of the word

Default value

B

Description
This variable defines how WhizBase engine will perform the search for values

provided by WBF_ form fields. WhizBase engine uses SQL to retrieve data from the
database, and SQL uses joker (wildcard) characters like * (% in ANSI SQL) or ? (_ in
ANSI SQL) for "LIKE" comparison (WhizBase can do LIKE comparison for fields of

TEXT and MEMO data type). By default WhizBase adds wildcards on both sides of
data provided using WBF_ form fields. By using WB_AddJoker variable, this behavior
can be changed.

e.g.

WBF_Name value WB_AddJoker value WHERE clause

John B Name LIKE "*John*"

John E Name LIKE "John*"

John S Name LIKE "*John"

John N Name LIKE "John"

22.1.19.2 WB_AndOr - condition concatenation type

Syntax
WB_AndOr=any valid WBSP constant

Syntax example

WB_AndOr=AND

Valid inputs
AND - for returning the records that meet all conditions

OR - for returning the records that meet any of the conditions

Default value
OR

Description
This variable defines how WhizBase engine will perform the search for values

provided by WBF_ form fields. When WhizBase generates a query for retrieving the
records based upon WBF_ values for more than one field (receives wbf_ form fields
for more than one database field) it can be set to combine the conditions (AND) or to

return records that meet any single condition (OR).

e.g.

WBF_Title
WBF_Year
published

WB_AndOr WHERE clause
Number of
records

www 2000 OR
Title LIKE "*www*" OR Year

published=2000
11

www 2000 AND
Title LIKE "*www*" AND Year
published=2000

2

22.1.19.3 WB_BaseName - name of the database used

Syntax

WB_BaseName=name of the MDB file or directory where ISAM databases are located

Syntax example
WB_BaseName=biblio.mdb

Valid inputs
Any valid file or directory name (depending on what database type is used)

Default value

none

Description

This variable contains the file name of the file to be used (for MS Access databases
and MS Excel files) or in case of using ISAM database the name of the directory
containing the data.

In some cases (depending upon WB_Command, WB_Connect and WB_DBObject) this
variable is required.

e.g.

WB_Connect WB_BaseName WB_RcdSet

 /database/biblio.mdb titles

dBASE III; /database/ titles.dbf

Text; /database/ titles.txt

Excel 8.0; /database/biblio.xls titles

22.1.19.4 WB_CDate - set conversion of date/time and boolean fields

Syntax
WB_CDate=boolean value

Syntax example

WB_CDate=F

Valid inputs
T,TRUE,1,ON for True
F,FALSE,0,OFF for False

Default value
TRUE

Description
This is a True/False flag that determines how WhizBase will treat boolean and
date/time fields value (received by WBF_ form field). If set to true (default),

WhizBase will convert received value representing date/time to numeric date value,
and true/false string to actual boolean value. Actually this variable should be
changed only in case of connecting to database type that uses ANSI SQL (e.g.

MySQL, Oracle, etc.). If this variable is set to False WhizBase will compare the exact
value for date and boolean field as it was received from HTML form.

22.1.19.5 WB_ChangeHFOn - report header/footer grouping field(s)

Syntax
WB_ChangeHFOn=database field name

Syntax example

WB_ChangeHFOn=[Year published]

Valid inputs
Any database field name or list of names

Default value
none

Description

This variable defines which field(s) will be monitored for value change that will
initiate showing header and footer report sections. If there is more than one field,
change in any of those fields will initiate showing header and/or footer section. Field

names that have a space in name must be enclosed in square brackets.
If WB_Order variable does not exist it will get exactly the same value as
WB_ChangeHFOn. If it exists, then it must start with same fields in same order as

they appear in WB_ChangeHFOn, or WBSP will generate the error.

e.g.

WB_ChangeHFOn valid WB_Order invalid WB_Order

[Year published] [Year published] Title

[Year published] [Year published], Author Author, [Year published]

[Year published], Author [Year published], Publisher

22.1.19.6 WB_Connect - ISAM driver or ODBC DSN

Syntax

WB_Connect=any valid connection string

Syntax example
WB_Connect=dBASE III;

Valid inputs

Database type WB_Connect value (do not forget semicolons)

Microsoft Jet Database none

dBASE III dBASE III;

dBASE IV dBASE IV;

dBASE 5 dBASE 5.0;

Paradox 3.x Paradox 3.x;

Paradox 4.x Paradox 4.x;

Paradox 5.x Paradox 5.x;

FoxPro 2.0 FoxPro 2.0;

FoxPro 2.5 FoxPro 2.5;

FoxPro 2.6 FoxPro 2.6;

Excel 3.0 Excel 3.0;

Excel 4.0 Excel 4.0;

Excel 5.0 or Excel 95 Excel 5.0;

Excel 97-2003 Excel 8.0;

Excel 2007+ Excel 12.0 Xml;HDR=YES;

Text Text;

ODBC ODBC;DATABASE=database;UID=
user;PWD=password;DSN=datasourcename;[LOGIN

TIMEOUT= seconds;]

Default value
Microsoft Jet Database - MS Access (empty value of WB_Connect)

Description
This variable contains a database type specifier defining which ISAM driver or ODBC
DSN will be used for accessing the database. Do not set any value to this variable if

you are using MS Access database (*.mdb or *.accdb).

22.1.19.7 WB_DBFlds - field(s) included in recordset

Syntax
WB_DBFlds=database field list

Syntax example
WB_DBFlds=Title, Year published, ISBN, Qty, Price, Qty*Price as Amount

Valid inputs
Any database field name, list of names or valid SQL expression

Default value
* (all fields from recodrset)

Description

This variable contains SQL expression that defines what database fields will be
included in the recordset.

22.1.19.8 WB_DBLock - record locking type

Syntax
WB_DBLock=any valid WBSP constant for record locking

Syntax example

WB_DBLock=P

Valid inputs
This variable accepts following WBSP constants:

 A - Automatic
 P - Pessimistic locking

 O - Optimistic locking
 U - Unspecified (for DAO connections same as A)

e.g.
WB_DBLock=P

or

WB_DBLock=O

Default value
A

Description
This variable defines what type of record locking will be used when opening the

recordset. If you are not sure what type of record locking you need do not change

the default value.

22.1.19.9 WB_DBObject - object used to access the database

Syntax
WB_DBObject=any valid WBSP constant or ADO connection string

Syntax example
WB_DBObject=D35

Valid inputs

This variable accepts following WBSP constants:

 D35 - use DAO object version 3.5
 D36 - use DAO object version 3.6

 A35 – use ADO object with Microsoft.Jet.OLEDB.3.5 provider
 A40 – use ADO object with Microsoft.Jet.OLEDB.4.0 provider
 A07 - use ADO object with MS Access 2007 databases - *.accdb files

(requires 2007 Office System Driver: Data Connectivity Components installed
on the server)

 A10 - use ADO object with MS Access 2010 databases - *.accdb files

(requires Microsoft Access Database Engine 2010 Redistributable installed on
the server)

If ADOConnectionString server configuration variable is set On then this variable can
accept any valid ADO connection string.

e.g.
WB_DBObject=Driver={OracleODBCDriver};Dbq=YourDataBaseName;Uid=YourUser

Name;Pwd=YourPassword

or

WB_DBObject=Provider=sqloledb;DataSource=(local);Initial Catalog=

YourDataBaseName;UserID=YourUserName;Password=YourPassword

Default value
A40

Description

This variable defines what type of object will be used to access the database. If ADO
connection string is provided, WBSP will use ADO object.

22.1.19.10 WB_ExactCount - count all records in recordset

Syntax
WB_ExactCount=boolean value

Syntax example

WB_ExactCount=T

Valid inputs
T,TRUE,1,ON for True
F,FALSE,0,OFF for False

Default value
FALSE

Description
This is a True/False flag that determines if the WBSP engine will perform full page
count. If the result of the query is a recordset with huge number of records, WBSP

engine will count and display links for first N pages, and then as user moves forward
it will provide links for more pages. This way WBSP engine works much faster. If you
for some reason want WBSP engine to show exact number of pages for a recordset

with a huge number of records, set this variable to TRUE. Default value is FALSE.
This field has no effects if used with cross-table query (in that case WBSP engine will
process all records regardless of WB_ExactCount value) and it also does not affect

$WBP[RC] function.

22.1.19.11 WB_Exclusive - open the database in exclusive mode

Syntax
WB_Exclusive=boolean value

Syntax example

WB_Exclusive=T

Valid inputs
T,TRUE,1,ON for True
F,FALSE,0,OFF for False

Default value
FALSE

Description
This is a True/False flag that determines if the WhizBase engine will open the
database in exclusive mode (single user mode). This is required when WBSP engine

is used on read-only media (such as web on CD-ROM). Placing WBSP engine and
wbsp pages on read-only media also requires setting field WB_ ReadOnly to TRUE.

22.1.19.12 WB_Execute - execute SQL statement(s)

Syntax
WB_Execute=SQL action query

Syntax example

WB_Execute=update titles set [Year Published]=2000 where ([Year
published]=2010)

Valid inputs
Any valid SQL statement supported by current database. To use more than one SQL

statement separate them with semicolon followed by the new line characters (e.g.
;$wbfn{chr(13)}$wbfn{chr(10)}) or place them in include file one statement par line
ending with semicolon and call it using $wbrinc function.

Default value
none

Description

This variable contains SQL statement that will be executed before main action
defined in WB_Command variable. When it is set in subreport WBSP file, this variable
can contain the $WBF function in report format. In this case $WBF function will

refer to superior recordset (the one defined in file containing the sub report).

22.1.19.13 WB_Group - SQL clause "GROUP BY"

Syntax
WB_Group=database field name

Syntax example
WB_Group=[Year published]

Valid inputs

Any database field name or list of names

Default value
none

Description

This variable contains the field name (or comma-separated list of field names) upon
which WBSP engine will group the records (SQL clause GROUP BY) when calculating
aggregate SQL functions. Field names that have a space or other special character in

name must be enclosed in square brackets.

22.1.19.14 WB_Having - SQL clause "HAVING"

Syntax
WB_Having=condition

Syntax example
WB_Having=(((Sum(IncPayment.AmountPaid))<>[AmountDue]))

Valid inputs

Any valid SQL condition

Default value
none

Description
This variable contains the SQL Clause HAVING that specifies which grouped records

are displayed in a SELECT statement with a GROUP BY clause (WB_Having). After
GROUP BY combines records, HAVING displays any records that satisfy the
conditions of the HAVING clause.

22.1.19.15 WB_InsBr - replace new line characters with

Syntax

WB_InsBr=boolean value

Syntax example
WB_InsBr=T

Valid inputs

T,TRUE,1,ON for True
F,FALSE,0,OFF for False

Default value
FALSE

Description

This is a True/False flag that determines if the WhizBase engine will send break tag
(
) instead of line break character (ASCII 10) contained in any database field.

22.1.19.16 WB_LCID - locale identifier ID

Syntax
WB_LCID=numeric value

Syntax example
WB_LCID=3079

Valid inputs
Any numeric value of Locale ID (LCID)

Default value
none

Description
This variable defines Locale identifier different from the the one defined by system.
Complete list of locales can be found here.

22.1.19.17 WB_MatchCase - case sensitive search

Syntax

WB_MatchCase=boolean value

Syntax example
WB_MatchCase=T

Valid inputs
T,TRUE,1,ON for True

F,FALSE,0,OFF for False

Default value
FALSE

Description
This variable defines if the WhizBase engine will perform case sensitive search on

ISAM databases. It has no effect on MS Access databases. However, search will be
faster with this field set to TRUE with any database type.

22.1.19.18 WB_MaxPages - maximum number of page links in report
navigation

Syntax
WB_MaxPages=numeric value

Syntax example
WB_MaxPages=30

Valid inputs

Any numeric value

Default value
20

Description

This variable contains the maximum number of direct links to the other pages of the
report. If it is not set, WhizBase will generate and display links to 20 pages (if
$WBNavigator or $WBPageNums tag exists). WhizBase will generate links to the

other pages by placing current page number in the middle of the list if possible.

22.1.19.19 WB_MaxRec - maximum number of records per page

Syntax
WB_MaxRec=numeric value

Syntax example
WB_MaxRec=30

Valid inputs

Any numeric value and WBSP constant all

Default value
20 for main report
all for subreport

Description

In order to prevent overloading of user's browser WBSP engine breaks the report in
pages. Use WB_MaxRec variable to define the number of the records to be displayed
on each report page. Unlike previous versions (where maximum value for this field

was limited to 100 records) since version 3.000 there is no limit to this value. There
is, however, one special value - all (WB_MaxRec=all). The value all defines
that WBSP engine will generate report that contains ALL records from selected

recordset.

22.1.19.20 WB_MQ - make query (yes/no)

Syntax
WB_MQ=boolean value

Syntax example
WB_MQ=F

Valid inputs

T,TRUE,1,ON for True
F,FALSE,0,OFF for False

Default value
TRUE

Description

It is possible to prevent WhizBase from creating the WHERE clause based on values
of WBF_ fields by setting this variable to FALSE. This can speed up WBSP pages that
use WB_Query variable or reports that show all the records from recordset. In all

other cases it is wise not to change the value of WB_MQ.

22.1.19.21 WB_Null - update string for clearing field value

Syntax
WB_Null=any string value

Syntax example

WB_Null=$CLR

Valid inputs
Any string value

Default value
$WBNULL$

Description

This variable sets the value that will be used to identify field that should be set to
NULL value during the Update command. WBSP uses string defined in WB_Null
variable as a value for WBF_ form field(s) to define which database table fields in

current (updated) record should be set to empty string. It does not apply to the
numeric fields (to clear them set their value to 0).

22.1.19.22 WB_Order - SQL clause "ORDER BY"

Syntax
WB_Order=database field name

Syntax example

WB_Order=[Year published] DESC, Publishers.Name

Valid inputs
Any database field name or list of names

Default value
none

Description

This variable contains the the name of database field (or comma separated list of
fields) by which the records will be sorted. Field names that have a space in name
must be enclosed in square brackets. To sort the records is descending order add

word DESC after the name of field that should be sorted in descending order.

If WB_Order variable is not set and WB_ChangeHFOn variable is defined, WB_Order

variable will get exactly the same value as WB_ChangeHFOn. If both variables are
defined, then WB_Order must start with same fields as defined in WB_ChangeHFOn
but it can have more fields in the list.

22.1.19.23 WB_Pass - database password

Syntax

WB_Pass=user password

Syntax example
WB_Pass=mypassword

Valid inputs
Any valid password depending upon database type. Password can not start with

numeric character.

Default value
none

Description

This variable contains user password for confirming identification in database
system.

22.1.19.24 WB_Predicate - SQL predicate

Syntax
WB_Predicate=SQL predicate

Syntax example

WB_Predicate=TOP 10%

Valid inputs
One of the following predicates: ALL, DISTINCT, DISTINCTROW, or TOP.

Default value
none

Description

This variable defines the SQL predicate to restrict the number of records returned. If
none is specified, the default is ALL.

22.1.19.25 WB_Query - SQL clause "WHERE"

Syntax
WB_Query=condition

Syntax example

WB_Query=date=$wbfn{date}

Valid inputs
Any valid condition that can be used as SQL WHERE clause

Default value
none

Description
This variable contains condition (or more conditions) that will be used as WHERE
clause of SQL SELECT statement. It can contain any type of condition respecting SQL

syntax and current recordset structure. When it is set in subreport WBSP file, this
variable can contain the $WBF function in report format. In this case $WBF function
will refer to superior recordset (the one defined in file containing the sub report -

e.g.WB_Query=PubID=$WBF[PubID]).

22.1.19.26 WB_RcdSet - SQL clause "FROM"

Syntax
WB_RcdSet=table name or recordset definition (SQL FROM clause)

Syntax example

WB_RcdSet=titles inner join publishers on titles.PubID=Publishers.PubID

Valid inputs
Any valid SQL FROM clause.

Default value
none

Description

This variable contains recordset definition (cross-table query or table name). If you
use ISAM database then table name is the same as the file name without extension,
except for WB_Connect=Text; (for example to open table authors.dbf you don't need

the dbf extension). This variable is required if WB_Command has any of these
values: Q, U, D, A and L. It is also required when WB_Command has value P and
WB_BaseName is not empty.

22.1.19.27 WB_ReadOnly - open the database in read-only mode

Syntax

WB_ReadOnly=boolean value

Syntax example
WB_ReadOnly=T

Valid inputs
T,TRUE,1,ON for True

F,FALSE,0,OFF for False

Default value
FALSE

Description
This is a True/False flag that determines if the WBSP engine will open the database

in read-only mode. This is required when WBSP engine is used on read-only media
(such as web on CD-ROM). Placing WBSP engine and wbsp pages on read-only media
also requires setting WB_Exclusive variable to TRUE.

22.1.19.28 WB_SetADOCompatible - ANSI wildcard compatibility

Syntax

WB_SetADOCompatible=boolean value

Syntax example
WB_SetADOCompatible=T

Valid inputs
T,TRUE,1,ON for True

F,FALSE,0,OFF for False

Default value
FALSE

Description

This is a True/False flag that determines if the WBSP engine will change asterisk
wildcard (*) in WB_Query variables with percent sign (%) - ANSI wildcard. This
variable should be used only in projects built with previous versions of

WBSP that extensively use WB_Query variable and asterisk wildcard.

22.1.19.29 WB_ShowEmpty - display empty database fields as space

Syntax
WB_ShowEmpty=boolean value

Syntax example
WB_ShowEmpty=T

Valid inputs

T,TRUE,1,ON for True
F,FALSE,0,OFF for False

Default value
FALSE

Description

This is a True/False flag that determines if the WBSP engine will return a non
breaking space character () for empty database fields. In some cases it can
be useful to set this variable to true (when using $wbdetail function or

WB_TempName=$default$) because HTML tables do not render empty cells same
way as they do ones with content (this default behavior of <table ...> element can
be changed using CSS).

22.1.19.30 WB_StartRec - internal page counter

Syntax

WB_StartRec=numeric value

Syntax example
WB_StartRec=30

Valid inputs

Any numeric value

Default value
1

Description
This variable is used as WhizBase internal page counter. It is generated

automatically in navigation links, but it can also be very useful in some special cases
- e.g. when WBSP engine updates the record it is much better to redirect user to
same page of the report then to redirect him to first page, or when for some reason

you do not want your report to start with first record, etc.

22.1.19.31 WB_System - system database (MDA/MDW) file name

Syntax
WB_System=file name of the system database

Syntax example

WB_System=/database/system.mdw

Valid inputs
Any valid file name respecting WhizBase path rules

Default value
none

Description

Sets the path for the current location of the workgroup information file (MS Access
system database).

22.1.19.32 WB_UID - unique record identifier field(s)

Syntax
WB_UID=database field name

Syntax example

WB_UID=PubID

Valid inputs
Any field name (or comma separated field list) from current recordset

Default value
none

Description

This variable is used to define what database fields uniquely identify every single
record. It is required for updating the records, but it can also be very useful for
adding and deleting the records. It can have a single database field name or comma-

separated list of fields.
When WB_UID is defined the value in fields that are used in WB_UID cannot be
changed. WB_UID field have effect with commands (actions) (A)dd, (D)elete and

(U)pdate.

When WB_UID is defined WhizBase will disallow adding records with duplicate values

for WB_UID fields and will also disallow deleting more than one record at a time.

22.1.19.33 WB_Unicode - send field value as unicode

Syntax
WB_Unicode=boolean value

Syntax example
WB_Unicode=T

Valid inputs

T,TRUE,1,ON for True
F,FALSE,0,OFF for False

Default value

FALSE

Description
This is a True/False flag that determines if the WhizBase engine will send the report
in Unicode format. This variable has effect only if WB_Command value is set to Q.

This variable should be used only with clients that require content in Unicode format.
For converting strings to UTF-8 charset use $WBFN[UTF(anystring)] and
$WBFU[fieldname].

22.1.19.34 WB_UniFTS - field(s) to be included in Universal Query Search

Syntax

WB_UniFTS=database field name

Syntax example
WB_UniFTS=Title

Valid inputs
Any field name (or comma separated field list) from current recordset

Default value
none

Description
Purpose of this variable is to narrow Universal Query Search (started when WhizBase
receives value for WB_UniQS variable) to listed fields only. Fields must NOT be

enclosed in square brackets.

22.1.19.35 WB_UniQS - string to be searched for in Universal Query Search

Syntax
WB_UniQS=search string

Syntax example
<input type="text" name="WB_UniQS" size="20">

Valid inputs

Any search string including SQL pattern rules

Default value
none

Description
This variable contains Universal Query String form field. When WhizBase receives

WB_UniQS it will return all records that contain the word(s) or phrase (enclosed in
quotation marks) provided by WB_UniQS variable, in any part of any non-numeric
field (or fields defined in WB_UniFTS variable) in recordset (whole field, beginning,

end or in the middle of the field).

This field can not be set in WBSP file, but it must be a part of a request (GET
or POST form field).

22.1.19.36 WB_WC - database wildcard character for LIKE comparison

Syntax

WB_WC=wildcard character

Syntax example
WB_WC=%

Valid inputs
Any valid wildcard supported by database provider

Default value
* for DAO and % for ADO connections

Description
This variable contains the wildcard character to be used with WB_AddJoker.
WhizBase automatically selects the value for this field depending on connection type

(* for DAO and ISAM and % for ODBC and ADO), but this field can be used to set
this value manually if for any case some other character has to be used. In most
cases this field has to have default value and we strongly recommend not to

change it.

22.1.19.37 WB_WholeWord - whole word search

Syntax
WB_WholeWord=boolean value

Syntax example
WB_WholeWord=T

Valid inputs

T,TRUE,1,ON for True
F,FALSE,0,OFF for False

Default value
FALSE

Description

This is a True/False flag that determines if the WBSP engine will add pattern string
[!A-Z0-9a-z] at the beginning and at the end of the values provided by WBF_ and
WB_UniQS form fields. In most cases this variable should not be changed from it's

default value. It is not removed for compatibility reasons.

22.1.19.38 WB_Usr - database user name

Syntax
WB_Usr=user name

Syntax example
WB_Usr=someuser

Valid inputs

Any valid user name depending upon database type. User name can not start with
numeric character.

Default value
none

Description
This variable contains user name for confirming identification in database system.

22.1.19.39 WBF_field - sending field values as request variables

Syntax
WBF_DBFieldName=value for DBFieldName

Syntax example (GET method)

WBF_ISBN=0201694085

Syntax example (POST method)
< input type="hidden" name="WBF_ISBN" value="0201694085">

Valid inputs
Any text and/or numeric value, including WhizBase tags and functions, that will be

accepted by DBField (e.g. do not send text to a numeric or date/time field).

Default value
none

Description
Form fields with name starting with WBF_ are used to carry a value for specific

database field. The name of the field is specified after WBF_ prefix and it has to be
exactly the same as in the database. The action that will be performed with
received value depends upon value of the WB_Command and (for some

WB_Command values) WB_UID. Basically the most common case is that this value
will be used to filter records (WB_Command values Q, D, P, L). In other cases the
value will be stored in database field (WB_Command values A and U). The

exception to this rule is if field name following the WBF_ prefix is the same as field
name defined in WB_UID variable and WB_Command value is U. In this case

received value for that field will be used to identify the record to be updated and all

other WBF_ values will be stored to proper database fields.

The best way to illustrate usage of these fields is example.

[FormFields]

WB_Command=q

WB_Basename=biblio.mdb

WB_Rcdset=titles

wb_showlogo=F

[MsgAndLbl]

WB_Style=font-family:verdana;font-size:12px;color:#CC0000;

<!--WB_BeginTemplate-->

<html>

<head>

<style>

.wbspttbl{

border:1px solid #000000;

font-family:verdana;

font-size:12px;

border-collapse:collapse;

border-spacing:0px;

}

.wbspthdr{

background-color:#CC0000;

border:1px solid #000000;

color:#C0C0C0;

}

.wbsptrow{

background-color:#FFCC00;

border:1px solid #000000;

color:#0000CC;

}

</style>

<title>Simple database search example</title>

</head>

<body>

<form method="POST" action="$wbe[script_name]">

Title: <input type="text" name="WBF_Title" size="20">

Year published: <input type="text" name="WBF_Year published"

size="20">

<input type="radio" value="And" checked name="WB_AndOr">AND <input

type="radio" name="WB_AndOr" value="Or">OR

<input type="submit" value="Go" name="B1">

</form>

$wbdetail[t]

</body>

</html>

Run the file with this example code and experiment with various values for "Title"
and "Year published" fields, and try changing AND/OR form values.

There are few rules:

 To let user search through specific field just send form field named exactly as
database field with prefix WBF_ (don't forget the underscore) to a WBSp file
with WB_Command=Q

 Depending on WB_AndOr field WBSP engine will return records that meet all

the conditions (AND) or any of the conditions (OR) (WB_Command values Q,
D, P or L)

 If user leaves any of the fields empty, those fields will be ignored (all

WB_Command values)
 If WB_Command value is Q, D, P or L:

o All SQL pattern rules are supported

o In Numeric and Date fields user can enter characters for comparison at
the beginning of entered value (> greater than, < less then, >=
greater or equal,<= less or equal and <> not equal)

e.g.
<input type="hidden" name="WBF_Year published" value=">1999">

<input type="hidden" name= "WBF_Yearpublished"value="=<2000">
Try typing comparison characters as a part of form field in example
above

 If WB_Command value is U
o To update database field to NULL value send exactly the same value in

WBF_field and WB_Null variables (text and memo field types only)

o To store new value that is related to old one use update prefixes

These variables can not be part of WBSP file - they can only be sent by client as a
part of http (or https) request using either POST or GET method.

22.1.20 DB administering (DAO only)

These variables are used to modify database and table permissions, users, groups
and passwords for MS Access *.MDB databases. They can not be used with other

database types including MS Access 2007 files (*.ACCDB).

WB_DBAddData
WB_DBAdmin
WB_DBDelData

WB_DBEditData
WB_DBGroup
WB_DBModDes

WB_DBNewPass
WB_DBNPassCh
WB_DBOldPass

WB_DBReadData
WB_DBReadDes
WB_DBUser

WB_PID

22.1.20.1 WB_DBAddData - permission for adding records to the database

Syntax
WB_DBAddData=boolean value

Syntax example
WB_DBAddData=T

Valid inputs

T,TRUE,1,ON for True
F,FALSE,0,OFF for False

Default value

none

Description
This variable sets a value that establishes the permissions for adding records to
the database table (defined in WB_RcdSet) for the user or group identified by the

WB_DBUser or WB_DBGroup of a table (DAO only). If it has value TRUE WhizBase
will assign this permission to the user. If this field is omitted or it has value FALSE
WhizBase will deny this permission to the user. This variable has effect only if the

WB_Command value is SP.

22.1.20.2 WB_DBAdmin - permission for administering the database

Syntax
WB_DBAdmin=boolean value

Syntax example

WB_DBAdmin=T

Valid inputs
T,TRUE,1,ON for True
F,FALSE,0,OFF for False

Default value

none

Description
This variable sets a value that establishes the permissions for administering the
database for the user or group identified by the WB_DBUser or WB_DBGroup of a

table (DAO only). If it has value TRUE WhizBase will assign this permission to the
user. If this field is omitted or it has value FALSE WhizBase will deny this permission
to the user. This variable has effect only if the WB_Command value is SP.

22.1.20.3 WB_DBDelData - permission for deletinging records from the

database

Syntax
WB_DBDelData=boolean value

Syntax example
WB_DBDelData=T

Valid inputs

T,TRUE,1,ON for True
F,FALSE,0,OFF for False

Default value
none

Description

This variable sets a value that establishes the permissions for deleting records
from the database table (defined in WB_RcdSet) for the user or group identified
by the WB_DBUser or WB_DBGroup of a table (DAO only). If it has value TRUE

WhizBase will assign this permission to the user. If this field is omitted or it has

value FALSE WhizBase will deny this permission to the user. This variable has effect
only if the WB_Command value is SP.

22.1.20.4 WB_DBEditData - permission for updating records in the database

Syntax
WB_DBEditData=boolean value

Syntax example

WB_DBEditData=T

Valid inputs
T,TRUE,1,ON for True
F,FALSE,0,OFF for False

Default value
none

Description
This variable sets a value that establishes the permissions for updating records in

the database table (defined in WB_RcdSet) for the user or group identified by the
WB_DBUser or WB_DBGroup of a table (DAO only). If it has value TRUE WhizBase
will assign this permission to the user. If this field is omitted or it has value FALSE

WhizBase will deny this permission to the user. This variable has effect only if the
WB_Command value is SP.

22.1.20.5 WB_DBGroup - name of the database users' group

Syntax
WB_DBGroup=string value

Syntax example

WB_DBGroup=EmlUsers

Valid inputs
Any valid group name

Default value
none

Description

WB_Command value WB_DBGroup contains

AU and DU the name of group to be added to or

deleted from workgroup information file
(system database)

AG and DG the name of the group to which new user
(defined in WB_DBUser) will be added or

from which it will be deleted

SP the name of the group to which new
permissions will be assigned

22.1.20.6 WB_DBModDes - permission for modifying the database structure

Syntax

WB_DBModDes=boolean value

Syntax example
WB_DBModDes=T

Valid inputs
T,TRUE,1,ON for True

F,FALSE,0,OFF for False

Default value
none

Description

This variable sets a value that establishes the permissions for modifying the
design of the database table (defined in WB_RcdSet) for the user or group
identified by the WB_DBUser or WB_DBGroup of a table (DAO only). If it has value

TRUE WhizBase will assign this permission to the user. If this field is omitted or it
has value FALSE WhizBase will deny this permission to the user. This variable has
effect only if the WB_Command value is SP.

22.1.20.7 WB_DBNewPass - new database password

Syntax

WB_DBNewPass=string value

Syntax example
<input type="password" name="WB_DBNewPass" size="20">

Valid inputs
Any string value not starting with numeric character

Default value

none

Description
This variable contains a new password for user defined in WB_DBUser when
WB_Command value is CP.

This value cannot be set in any WBSP file. WBSP will accept it only from

HTML form.

22.1.20.8 WB_DBNPassCh - control value of the new password

Syntax
WB_DBNPassCh=string value

Syntax example
<input type="password" name="WB_DBNPassCh" size="20">

Valid inputs

Same value as entered for WB_NewPass variable

Default value
none

Description
This variable contains control value for new password for user defined in WB_DBUser

when WB_Command value is CP. If this variable is not empty it MUST match
WB_NewPass or the error will be generated.

This value cannot be set in any WBSP file. WBSP will accept it only from
HTML form.

22.1.20.9 WB_DBOldPass - old database password

Syntax
WB_DBOldPass=string value

Syntax example
<input type="password" name="WB_DBOldPass" size="20">

Valid inputs

Exact value of user's existing password

Default value
none

Description
This variable contains control value for old password for user defined in WB_DBUser

when WB_Command value is CP. If this variable does not match existing password,
the error will be generated.

This value cannot be set in any WBSP file. WBSP will accept it only from
HTML form.

22.1.20.10 WB_DBReadData - permission for reading records from the

database

Syntax
WB_DBReadData=boolean value

Syntax example
WB_DBReadData=T

Valid inputs

T,TRUE,1,ON for True
F,FALSE,0,OFF for False

Default value
none

Description

This variable sets a value that establishes the permissions for reading records to
the database table (defined in WB_RcdSet) for the user or group identified by
the WB_DBUser or WB_DBGroup of a table (DAO only). If it has value TRUE

WhizBase will assign this permission to the user. If this field is omitted or it has
value FALSE WhizBase will deny this permission to the user. This variable has effect
only if the WB_Command value is SP.

22.1.20.11 WB_DBReadDes - permission for reading records the database

design (structure)

Syntax
WB_DBReadDes=boolean value

Syntax example

WB_DBReadDes=T

Valid inputs
T,TRUE,1,ON for True
F,FALSE,0,OFF for False

Default value

none

Description
This variable sets a value that establishes the permissions for reading the design
of the database table for the user or group identified by the WB_DBUser or

WB_DBGroup of a table (DAO only). If it has value TRUE WhizBase will assign this
permission to the user. If this field is omitted or it has value FALSE WhizBase will
deny this permission to the user. This variable has effect only if the WB_Command

value is SP.

22.1.20.12 WB_DBUser - database user name for administering

Syntax
WB_DBUser=string value

Syntax example
WB_DBUser=JohnDoe

Valid inputs

Any valid user name

Default value
none

Description

WB_Command
value

WB_DBUser contains

AU and DU the user name to be added to or deleted

from workgroup information file (system
database)

AG and DG the user name that will be added to or
deleted from group (defined in

WB_DBGroup)

SP the user name to which new permissions
will be assigned

22.1.20.13 WB_PID - personal identification

Syntax
WB_PID=alphanumeric value

Syntax example
WB_PID=JD234

Valid inputs

Any combination of alphanumeric characters

Default value
Same value as WB_DBUser or WB_DBGroup if WB_DBUser has no value

Description
This field contains user’s personal identification to be used with user's name defined

in WB_DBUser when WhizBase executes Add User command (WB_Command=AU).

22.1.21 Error reporting

These variables are used for formatting error reports.

WB_ErrFile
WB_ErrMail

22.1.21.1 WB_ErrFile - template for error reports

Syntax
WB_ErrFile=file name

Syntax example

WB_ErrFile=/noread/fileerror.htm

Valid inputs
Any valid file name respecting WhizBase path rules

Default value
error.htm

Description

This variable contains the file name of the file that should be used as a template for
error messages. If the specified file can not be found, WhizBase will generate
standard error message page.

22.1.21.2 WB_ErrMail - email address at the end of error message

Syntax

WB_ErrMail=email address

Syntax example
WB_ErrMail=errorreport@wbsp.com

Valid inputs
Any valid e-mail address

Default value

webmaster@$wbe[server_name]

Description
This variable contains e-mail address that will appear at the end of error message,

right after the sentence Then contact the administrator of this service:
This e-mail address is also used for sending the test e-mail message (WB_Command
value T).

22.1.22 File related (WF and DF commands)

These variables are used with two WB_Command values - DF and WF. In all other

cases their values are ignored by WhizBase.

WB_FileName
WB_KeyName
WB_KeyValue

WB_Section
WB_Separator

22.1.22.1 WB_FileName - file name for DF and WF commands

Syntax
WB_FileName=file name

Syntax example

WB_FileName=/noread/users.cfg

Valid inputs
Any valid file name respecting WhizBase path rules

Default value
none

Description

This variable contains the file name of the configuration file that should be used with
WB_Command values DF (file will be deleted) and WF (key value vill be written in
file). This variable is required if WB_Command value is DF or WF, and it is ignored in

all other cases.

22.1.22.2 WB_KeyName - variable name(s) for WF command

Syntax

WB_KeyName=key name

Syntax example
WB_KeyName=BgndColor

Valid inputs
Any alphanumeric string or list of strings separated by WB_Separator

Default value

none

Description
This variable contains the name(s) of the key(s) that will be changed/added/deleted

using WB_Command value WF. This variable is required if WB_Command value is
WF, and it is ignored in all other cases. If it contains list of names separated by
WB_Separator, then the number of names must match the number of values in

WB_KeyValue variable.

22.1.22.3 WB_KeyValue - variable value(s) for WF command

Syntax
WB_KeyValue=key value

Syntax example
WB_KeyValue=#C0C0C0

Valid inputs

Any alphanumeric string or list of strings separated by WB_Separator

Default value
none

Description
This variable contains the value(s) for the key(s) that will be changed or added using

WB_Command value WF. If this variable is empty or it contains an empty
string in list, then the matching key name will be deleted. This variable is
required if WB_Command value is WF, and it is ignored in all other cases. If it

contains list of values separated by WB_Separator, then the number of values must
match the number of names in WB_KeyName variable.

22.1.22.4 WB_Section - file section for WF command

Syntax
WB_Section=section name

Syntax example

WB_Section=Colors

Valid inputs
Any alphanumeric string

Default value

none

Description
This variable contains the name of the section containing the key that will be
changed/added/deleted using WB_Command value WF. This variable is required if

WB_Command value is WF, and it is ignored in all other cases.

22.1.22.5 WB_Separator - character used to separate different keys and
different values for WF command

Syntax
WB_Separator=separator character

Syntax example

WB_Separator=;

Valid inputs
Any character

Default value

none

Description
This variable contains the character which will be used to separate different entries in
the WB_Keyname and WB_KeyValue variables. This variable is required if

WB_Command value is WF, and it is ignored in all other cases. Following example
shows how it should be used:

[FormFields]

WB_KeyName=Airpressure|Temperature|Humidity

WB_KeyValue=$wbv{fAirP};|$wbv{fTemp};|$wbv{fHum};

WB_Separator=|

WB_Section=$wbfn{fdt(dd-mmm-yyyy hh:mm)}

WB_FileName=Weather.cfg

WB_Command=WF

<!--WB_BeginTemplate-->

<html>

<body>

Values sucessfully modified!

</body>

</html>

And this is what might be the result written in file Weather.cfg upon calling this script
using following form field values < B>-fAirP=1034&fTemp=20&fHum=85:

[16-sep-2008 15:05]
Airpressure=1034;
Temperature=20;

Humidity=85;

22.1.23 HTTP

These variables are used to modify the default content of a HTTP header sent to the

client. They can be very powerful tools in building complex web solutions.

WB_HTTPHeader
WB_AddCookie
WB_ContentType

WB_Redirect

22.1.23.1 WB_AddCookie - name and value of the cookie to be
added/modified

Syntax
WB_AddCookie=cookiename=cookie value;

Syntax example
WB_AddCookie=LoginTime=$wbfn{fdt(dd.mmm.yyyy hh:mm:ss)};

Valid inputs
Any text and/or numeric value including WhizBase tags and functions.

Default value

none

Description
Content of this variable will be sent to client as Set-Cookie: clause in HTTP header
and added to existing HTTP_COOKIE value. HTTP_COOKIE can be retrieved using

WBSP function $wbgc[cookiename]. All existing HTTP cookies can be retrieved using
$wbe[HTTP_COOKIE] . Different cookies must be separated by double semicolon
(;;), and entire value of WB_SetCookie must end with semicolon (;) .

22.1.23.2 WB_ContentType - value for HTTP Content-Type: clause

Syntax

WB_ContentType=any valid MIME type

Syntax example
WB_ContentType=application/rss+xml

Valid inputs
Any text and/or numeric value including WhizBase tags and functions.

Default value

text/html

Description
Content of this variable will be sent to client as Content-Type: clause in HTTP
header.

22.1.23.3 WB_HTTPHeader - additional clauses for HTTP header

Syntax

WB_HTTPHeader=any valid HTTP header value

Syntax example
WB_HTTPHeader=Content-disposition: attachment; filename=report.rtf

Valid inputs
Any text and/or numeric value including WhizBase tags and functions. If you want to

send HTTP header that contains more than one line, save the header to file and use
$wbinc{} or $wbrinc{} (e.g. WB_HTTPHeader = $wbinc{header.ic})

Default value
none

Description
Content of this variable will be sent to client as part of standard HTTP header
together with other values (Status, Content-type, etc.).

22.1.23.4 WB_Redirect - the URL for 301 and 302 redirect (HTTP header

Location: clause)

Syntax
WB_Redirect=any valid URL

Syntax example (HTTP temporary redirect - 302)
WB_Redirect=http://$wbe{server_name}/thanks.wbsp?user=$wbf[username]

Syntax example (HTTP permanent redirect 301)

WB_Redirect=PERM:http://$wbe{server_name}/new_page_url

Syntax example (server-side redirect)
WB_Redirect=WBSP:/thanks.wbsp?user=$wbf[username]

Valid inputs
Any text and/or numeric value including WhizBase tags and functions. This variable

can contain WhizBase functions both in input and report syntax. Functions in input
syntax will be processed when WhizBase reads the variable. Functions in report
syntax will be processed after processing all variables and completing the

current command.

Default value
none

Description
This variable contains URL of the web content where the WBSP engine will redirect

visitor after completing the requested operation. It can be used in two ways – it
can be set to perform normal redirect (send to client HTTP header Location: clause)
or it can be set to perform server-side redirect (redirecting to other WBSP file

without contacting client – visitor's browser, for example). To perform server-side
redirect this value must have the name of the WBSP file with prefix WBSP:,
including colon character (:).

javascript:alert(%22Hyperlinks%20are%20disabled%20under%20Preview%20mode./n/nhref:%20Difference%20between%20report%20and%20input%20functions.html%22);

Whizbase performs temporary (302) redirect by default. For permanent redirect

(301) please add prefix PERM: to the URL including colon character (:).

22.1.24 Logging

These variables are used for enabling and formatting logging.

WB_Log
WB_Logdata
WB_LogTemp

WB_Debug

22.1.24.1 WB_Debug - file name for storing the debug information

Syntax
WB_Debug=file name

Syntax example

WB_Debug=/noread/debug.log

Valid inputs
Any valid file name respecting WhizBase path rules

Default value
none

Description

This variable contains the file name of the file that should be used for storing the
debug information in following format:
The variable WB_Debug is used to pass to WBSP the name of the file where WBSP

will save the debug information in following format:

DATE TIME

Form data:

Data posted using POST method

Data posted using POST method

Data posted using POST method

...

Data posted using POST method

------------EOFormDataSection------------

Environ:

Environment variable

Environment variable

Environment variable

...

Environment variable

------------EOEnvironSection------------

If this variable is not specified no debug information will be saved.

22.1.24.2 WB_Log - file name for storing the log data

Syntax

WB_Log=file name

Syntax example
WB_Log=/noread/useraccess.log

Valid inputs
Any valid file name respecting WhizBase path rules

Default value

none

Description
This variable contains the file name of the file that should be used for storing log

data. If this variable is not specified no logging will be performed.

22.1.24.3 WB_LogData - data to be stored in log

Syntax
WB_LogData=comma-separated list of variables

Syntax example
WB_LogData=HTTP_USER_AGENT, REMOTE_ADDR, WB_QUERY, WB_HTUSR

Valid inputs

Any valid environment or WhizBase variable

Default value
HTTP_USER_AGENT, REMOTE_ADDR, REMOTE_HOST, REMOTE_IDENT,
REMOTE_USER, WB_TEMPNAME, WB_QUERY, WB_ADDJOKER, WB_ORDER, WB_USR

Description

This variable contains comma-separated list of WhizBase and environment variables
that will be added to the log file specified in WB_Log variable. Date and time are
added automatically.

22.1.24.4 WB_LogTemp - template for log record

Syntax

WB_LogTemp=log line template

Syntax example
WB_LogTemp=$wbfn[date] $wbfn[time] - $wbe[HTTP_USER_AGENT],
$wbe[REMOTE_ADDR], $WBQuery

Valid inputs

Any valid WhizBase tag or function in input or report syntax

Default value
none

Description

This variable contains a template for a single line in log file. It can contain both input
functions and report tags and functions. WhizBase will first process the input
functions, then report tags and functions and then add processed line to the log file.

If values for both variables WB_LogData and WB_LogTemp are defined, the
WB_LogData will be ignored.
WhizBase will not add to log line any value that is not defined in

WB_LogTemp.

22.1.25 Mail related

These variables are used to configure mail related settings for use with
WB_Command values P, L and T.

WB_Attach

WB_AttachField
WB_BCC
WB_BCCField

WB_CC
WB_From
WB_Embed

WB_MailAuth
WB_MailPass
WB_MailPort

WB_MailServer
WB_MailSSL
WB_MailUser

WB_PlainText
WB_Subject
WB_To

WB_ToField

22.1.25.1 WB_Attach - mail attachment

Syntax
WB_Attach=attachment file name

Syntax example
WB_Attach=$wbv{attachfile}

Valid inputs

Any valid file name (or list of files separated by comma or semicolon) respecting
WhizBase path rules

Default value
none

Description

This variable contains full path (absolute or relative to the location of WBSP file) and
file name of the file(s) that will be attached to the email sent by WBSP engine.

22.1.25.2 WB_AttachField - name of field containing attachment file
name(s)

Syntax
WB_AttachField=database field name

Syntax example
WB_AttachField=AttachVersion

Valid inputs

Any valid field name from current recordset

Default value
none

Description

This variable contains the name of the field from current recordset that contains the
full path and file name of file(s) that will be attached to the email message sent by
WhizBase. Unlike WB_Attach variable that is used for sending same file(s) to all

recipients, WB_AttachField is used when there is a need to send different attachment
to every recipient. The field defined as WB_AttachField should contain valid file
name(s) respecting WhizBase path rules.

22.1.25.3 WB_BCC - email BCC address(es)

Syntax

WB_BCC=email address(es)

Syntax example
WB_BCC=support@whizbase.com

Valid inputs
Any valid email address or list of addresses separated with list separator character

(as defined in regional settings).

Default value
none

Description
This variable contains email address(es) for blind carbon copy recipient(s).

22.1.25.4 WB_BCCField - database field name containing email BCC

address(es)

Syntax
WB_BCCField=database field name

Syntax example
WB_BCCField=Email

Valid inputs

Any valid field name from current recordset

Default value
none

Description
This variable contains the name of the field from current recordset that contains

the email address to be added as blind carbon copy recipient.

22.1.25.5 WB_CC - email CC address(es)

Syntax
WB_CC=email address(es)

Syntax example

WB_CC=support@whizbase.com

Valid inputs
Any valid email address or list of addresses separated with list separator character
(as defined in regional settings).

Default value

none

Description
This variable contains email address(es) of carbon copy recipient(s).

22.1.25.6 WB_Embed - the name(s) of the file(s) to be embedded in the
email

Syntax

WB_Embed=attachment file name

Syntax example
WB_Embed=$wbv{embedfile}

Valid inputs
Any valid file name (or list of files separated by comma or semicolon) respecting

WhizBase path rules

Default value
none

Description
This variable contains full path (absolute or relative to the location of WBSP file) and

file name of the file(s) that will be embedded to the email sent by WBSP engine. The
difference from WB_Attach variable is that embedded images can be referenced in
message body by setting their URL to $WBCID[file name] (see the example for

$WBCID function).

22.1.25.7 WB_From - email from address

Syntax

WB_From=email address

Syntax example
WB_From=support@whizbase.com

Valid inputs
Any valid email address

Default value

none

Description
This variable contains email address that will appear as sender’s email address to

originate from.

22.1.25.8 WB_MailAuth - mail server authentication type

Syntax
WB_MailAuth=authorization type

Syntax example
WB_MailAuth=L

Valid inputs

Any valid type from following table:
0 - None - No authentication required.
L - Login - Authentication using LOGIN type.

P - Plain - Authentication using PLAIN type.
C - CramMD5 - Authentication using CRAM-MD5 type.
N - NTLM - Authentication using NTLM (SPA) type.

A - Auto - WhizBase tries to determine authentication automatically.

Default value
0 (zero) - No authentication required.

Description
This variable determines authentication type with the server.

22.1.25.9 WB_MailPass - mail server authentication password

Syntax

WB_MailPass=mailserver password

Syntax example
WB_MailPass=MjZ6hZTgDsE

Valid inputs
Valid password for account defined in WB_MailUser .

Default value

none

Description
This variable contains password for SMTP authentication.

22.1.25.10 WB_MailPort - mail server SMTP port

Syntax
WB_MailPort=numeric value

Syntax example

WB_MailPort=527

Valid inputs
Any valid SMTP port number on defined mail server

Default value

25

Description
This variable contains the Internet port number of the mail server that will be used
by WBSP engine for sending mail.

22.1.25.11 WB_MailServer - mail server name or IP address

Syntax

WB_MailServer=mail server name

Syntax example
WB_MailServer= mail.whizbase.com

Valid inputs
Any valid SMTP mail server

Default value

none

Description
This variable contains the name of the mail server that will be used by WBSP engine
for sending mail. It does not have to be same server that hosts WBSP files. It also

does not have to be Windows SMTP server – it can also be on UNIX, LINUX, etc. This
variable is required if WB_Command value is P or L.

22.1.25.12 WB_MailSSL - mail server authentication type

Syntax
WB_MailSSL=SSL type

Syntax example

WB_MailSSL=I

Valid inputs

Any valid type from following table:
0 - No security/SSL required
A - Security/SLL is allowed, but not required

R - Security is required
I - Implicit security through SSL wrapper

Default value
0 (zero) - No security/SSL required.

Description

This variable determines if SSL is used.

22.1.25.13 WB_MailUser - mail server authentication user name

Syntax
WB_MailUser=mailserver user name

Syntax example

WB_MailUser=someuser@somedomain.com

Valid inputs
Any valid username that exist on mail server defined in WB_MailServer .

Default value
none

Description

This variable contains login (user name) for SMTP authentication.

22.1.25.14 WB_PlainText - plain text email messsage part

Syntax
WB_PlainText=text/plain part of the message

Syntax example
WB_PlainText=Thank you for your submission! You can find more details at

http://www.whizbase.com/formsubmissions/?id=$wbf[id]

Valid inputs
Any text without HTML code. It can contain WhizBase report and input functions and
tags.

Default value

none

Description
This variable contains text/plain part of the e-mail message for non-HTML email
clients.

22.1.25.15 WB_Subject - email subject

Syntax

WB_Subject=any string value

Syntax example
WB_Subject=Report for $wbfn{fdt(dd-mmm-yyyy)}

Valid inputs
Any string value

Default value

none

Description
This variable contains the text that will be used as subject of the email(s) sent by

WhizBase using WB_Command P or L.

22.1.25.16 WB_To - email TO address(es)

Syntax
WB_To=email address(es)

Syntax example
WB_To=support@whizbase.com

Valid inputs

Any valid email address or list of addresses separated with list separator character
(as defined in regional settings).

Default value
none

Description

This variable contains email recipient(s) email address(es).

22.1.25.17 WB_ToField - database field name containing email TO
address(es)

Syntax
WB_ToField=database field name

Syntax example

WB_ToField=Email

Valid inputs
Any valid field name from current recordset

Default value
none

Description

This variable contains the name of the field from current recordset that contains
valid email address to be used as TO address.

22.1.26 Sessions

These variables are used for enabling and maintaining sessions.

WB_ClearSessions
WB_LogOffSession

WB_UseSessions

22.1.26.1 WB_ClearSessions - clear incative (expired) sessions

Syntax
WB_ClearSessions=boolean value

Syntax example

WB_ClearSessions= T

Valid inputs
T,TRUE,1,ON for True
F,FALSE,0,OFF for False

Default value

FALSE

Description
This variable controls if the current WBSP page will start session cleaning routine for
removing inactive sessions and their data. If this variable is set to TRUE WhizBase

will start the cleaning routine after it finish processing the WBSP page. The
WBSP page containing this variable does not have to use sessions, meaning
that WB_UseSessions can, but does not have to, be set to TRUE. The same result is

achieved with usage of report tag $WBACTSES.

22.1.26.2 WB_LogOffSession - clear current session

Syntax
WB_LogOffSession=boolean value

Syntax example
WB_LogOffSession= T

Valid inputs

T,TRUE,1,ON for True
F,FALSE,0,OFF for False

Default value
FALSE

Description

If this variable is set to TRUE WhizBase will stop a session by removing session ID

from HTTP cookie. After this, if same client (browser) opens a WBSP page with

WB_UseSessions set to TRUE, WhizBase will start a completely new session.

22.1.26.3 WB_UseSessions - use server sessions

Syntax
WB_UseSessions=boolean value

Syntax example
WB_UseSessions= T

Valid inputs

T,TRUE,1,ON for True
F,FALSE,0,OFF for False

Default value

FALSE

Description
This variable controls if the current WBSP page will use sessions and have access to
the session variables. If this variable is set to TRUE WhizBase will be able to

read/save session variables. If session does not exist WhizBase will create one
automatically.

22.1.27 SMS

These variables are used to configure SMS related settings for use with
WB_Command value SMS .

WB_SMSBR

WB_SMSC
WB_SMSCharacter
WB_SMSDB

WB_SMSField
WB_SMSIgnoreErrors
WB_SMSNumber

WB_SMSParity
WB_SMSPIN
WB_SMSPort

WB_SMSSB
WB_SMSSD
WB_SMSSR

WB_SMSTO

22.1.27.1 WB_SMSBR - SMS baud rate

Syntax
WB_SMSBR=phone/modem baud rate

Syntax example
WB_SMSBR=57600

Valid inputs

110, 300, 1200, 2400, 4800, 9600, 14400, 19200, 38400, 57600, 115200, 230400,
460800, 921600

Default value
19200

Description

This variable contains the baud rate at which the connected GSM Modem or Phone
communicates with the computer.

22.1.27.2 WB_SMSC - SMS center number

Syntax
WB_SMSC=service center number

Syntax example
WB_SMSC=+38761123456

Valid inputs
Any valid phone number containing digit characters and a plus (+) sign (for

international number format)

Default value
none

Description

This variable contains the service centre number which will be used for sending text
messages. If this variable is not specified the system will use the service center
number defined in the modem/phone.

22.1.27.3 WB_SMSCharacter - SMS character type

Syntax

WB_SMSCharacter=character encoding type

Syntax example
WB_SMSCharacter=ANS

Valid inputs
7BIT - 7-bit default SMS character encoding (max. 160 characters/message)

ANS - 8-bit ANSI character encoding (max. 140 characters/message)
UNI - 16-bit 8-bit Unicode character encoding (max. 70 characters/message)

Default value
7BIT

Description

This variable contains the type of character encoding to be used for sending text
messages.

22.1.27.4 WB_SMSDB - SMS data bits

Syntax

WB_SMSDB=data bits size

Syntax example
WB_SMSDB=8

Valid inputs
4, 5, 6, 7, 8

Default value

8

Description

This variable contains the communication Data Bits size between GSM Modem or
Phone and the computer.

22.1.27.5 WB_SMSField - database field name containing phone number of
text message recipient

Syntax

WB_SMSField=database field name

Syntax example
WB_SMSField=PhoneNum

Valid inputs
Any valid field name from current recordset

Default value

none

Description
This variable contains the name of the field from current recordset that contains
valid phone number to be used as SMS recipient. If this variable is defined, the

WB_SMSNumber variable will be ignored.

22.1.27.6 WB_SMSIgnoreErrors - ignore SMS error messages

Syntax
WB_SMSIgnoreErrors=boolean value

Syntax example
WB_SMSIgnoreErrors=T

Valid inputs

T,TRUE,1,ON for True
F,FALSE,0,OFF for False

Default value
FALSE

Description

This is a True/False flag that determines if the WhizBase engine will ignore the SMS
error messages when using SMS command with WB_SMSNumber. This flag has no
effects when WB_SMSField is defined, so send report returned by SMS command

will contain list of all errors in form of warnings.

22.1.27.7 WB_SMSNumber - SMS recipient phone number

Syntax
WB_SMSNumber=phone number

Syntax example
WB_SMSNumber=+387339414238

Valid inputs

Any valid phone number in national or international format.

Default value
none

Description

This variable contains SMS recipient phone number. If WB_SMSField is defined, the
WB_SMSNumber will be ignored.

22.1.27.8 WB_SMSParity - SMS parity type

Syntax
WB_SMSParity=parity type

Syntax example

WB_SMSParity=O

Valid inputs
N - None
O - Odd

E - Even
M - Mark
S - Space

Default value

N

Description
This variable contains the type of parity check for communication between GSM

Modem or Phone and the computer.

22.1.27.9 WB_SMSPIN - SMS Personal Identity Number (PIN)

Syntax
WB_SMSPIN=phone/modem PIN

Syntax example

WB_SMSPIN=0000

Valid inputs
Any four digit number

Default value
none

Description

This variable contains the PIN (Personal Identity Number) for activating the services
in the GSM Modem or Phone, if it is PIN protected.

22.1.27.10 WB_SMSPort - SMS modem COM port

Syntax

WB_SMSPort=com port name

Syntax example
WB_SMSPort=COM5

Valid inputs
Any valid COM port name

Default value

none

Description
This variable contains the name of the COM port where the GSM modem (or mobile
phone) is connected.

22.1.27.11 WB_SMSSB - SMS stop bits size

Syntax

WB_SMSSB=stop bits size

Syntax example
WB_SMSSB=1.5

Valid inputs
1, 1.5, 2

Default value

1

Description
This variable contains the communication Stop Bits size between GSM Modem or

Phone and the computer.

22.1.27.12 WB_SMSSD - SMS send delay

Syntax

WB_SMSSD=send delay in milliseconds

Syntax example
WB_SMSSD=500

Valid inputs
1 to 30000

Default value

1000

Description

This variable contains the minimum time delay interval between two consecutive
messages in milliseconds.

22.1.27.13 WB_SMSSR - SMS send retry

Syntax
WB_SMSSR=number of retries

Syntax example

WB_SMSSR=1

Valid inputs
0 to 10

Default value
2

Description
This variable contains the maximum number of retries after there is a failure in first
attempt.

22.1.27.14 WB_SMSTO - SMS timeout

Syntax

WB_SMSTO=timeout in milliseconds

Syntax example
WB_SMSTO=10000

Valid inputs
1 to 60000

Default value

30000

Description

This variable contains the timeout value in milliseconds which is used whenever the
GSM Modem or Phone stops responding.

22.2 MsgAndLbl variables - Subsection [MsgAndLbl]

This subsection contains the variables that define labels and style for navigation links
(for previous, next, first and last page) and messages (empty recordset and deleted

records). They can contain any valid HTML code including WhizBase report tags and
functions both in input and output syntax.
It can also contain variables for formatting navigation links WB_DigitDir and

WB_Style .

These are variables that can be stored in this subsection (in alphabetic order):
WB_DigitDir

WB_Style
WBL_FirstPage
WBL_LastPage

WBL_NextPage
WBL_PrevPage
WBM_Deleted

WBM_NoMatch

Here is the example of MsgAndLbl section (marked blue):

<!--

[FormFields]

WB_basename=biblio.mdb

wb_rcdset=titles

wb_command=Q

[MsgAndLbl]

WB_DigitDir=digits/

WB_Style=color:#CC0000; text-decoration: none

wbl_nextpage=

wbl_prevpage=

wbl_lastpage=

wbl_firstpage=

wbm_nomatch=Sorry!
Your search returned no records!
<a >Please

try again with other parameters

wbm_deleted=Operation completed!
$WBDeleted record(s)

successfully removed from your database!

-->

<!--WB_BeginTemplate-->

<html>

<head>

<title>Titles</title>

</head>

<body>

<table border="1" cellspacing="0">

<tr>

<td>Year published</td>

<td>Title</td>

<td>ISBN</td>

</tr>

<!--WB_BeginDetail-->

<tr>

<td>$wbf[Year published]</td>

<td>$wbf[title]</td>

<td>$wbf[ISBN]</td>

</tr>

<!--WB_EndDetail-->

</table>

<center>$wbnavigator</center>

</body>

</html>

To test this example, create images rightarrow.gif, leftarrow.gif, first.gif and last.gif
and place them in directory images located in same directory with this wbsp file. Also
create images of the digits 0 to 9 (name them 0.gif, 1.gif, 2.gif, ..., 9.gif) and place
them in directory digits located in same directory with this wbsp file.

22.2.1 WB_AddToURL - additional request variables for navigation URLs

formated as QUERY_STRING

Syntax
WB_AddToURL=a string that WhizBase should add to the end of all navigation links
created using navigation tags.

Syntax example

WB_AddToURL= selectedlanguage=eng&rowsbypage=4

Valid inputs
Any valid text including HTML tags. It must not start with ampersand (&).

Default value
none (WhizBase will not add anything to navigation links)

Description

When WhizBase creates navigation links it adds standard WhizBase variables to the
URL. However, it does not add non-WhizBase variables (form fields) received from
visitor using POST or GET. This variable contains the string that will be added at the

end of the link and will pass the variables to next page, without validating or
changing them. It will process the WhizBase functions and tags if they exist.

22.2.2 WB_DigitDir - directory containing image files for graphic navigation
links

Syntax

WB_DigitDir=directory URL

Syntax example
WB_DigitDir=/digits/

Valid inputs
URL of the directory that contains digit images named 0.gif, 1.gif, 2.gif, 3.gif,...,9.gif.

Default value

none (direct page links will use text, not images)

Description

This variable defines the name of the directory that contains digit images. If it is
defined, direct links to the report pages will be created in following form:
<img src="directory URL/digitimage.gif"

border="0">
e.g.

<a>

If WB_DigitDir is not defined direct links to the report pages will be created using
text:

pagenumber

e.g.

<a>2

22.2.3 WB_Style - navigation links CSS style

Syntax

WB_Style=CSS style definition

Syntax example
WB_Style=font-family:verdana;font-size:11px;font-weight:bold;

Valid inputs
Any valid CSS property

Default value

none (navigation links will use default style(s) used by current WBSP page)

Description
This variable defines the css style properties for navigation links that will be used on
page in this form:

Next page

22.2.4 WBL_FirstPage - link text for First page link

Syntax
WBL_FirstPage=text to be used as label for link to first page

Syntax example

WBL_FirstPage=

Valid inputs
Any valid text that can be placed between <a > and including HTML tags (IMG
for example)

Default value

First page

Description

This variable defines the text or HTML code that will be used for link to first page of
the report

22.2.5 WBL_LastPage - link text for Last page link

Syntax
WBL_LastPage=text to be used as label for link to last page

Syntax example

WBL_LastPage=

Valid inputs
Any valid text that can be placed between <a > and including HTML tags (IMG
for example)

Default value
Last page

Description
This variable defines the text or HTML code that will be used for link to last page of

the report

22.2.6 WBL_NextPage - link text for Next page link

Syntax
WBL_NextPage=text to be used as label for link to next page

Syntax example
WBL_NextPage=

Valid inputs

Any valid text that can be placed between <a > and including HTML tags (IMG
for example)

Default value
Next page

Description

This variable defines the text or HTML code that will be used for link to next page of
the report

22.2.7 WB_PassVars - comma delimited list of additional request variables
for navigation URLs

Syntax

WB_PassVars=comma separated form field names that WhizBase should include in
all navigation links created using navigation tags.

Syntax example
WB_PassVars= name,zip,rowsbypage

Valid inputs

Any valid text including HTML tags

Default value
none (WhizBase will add only standard variables to navigation links)

Description
When WhizBase creates navigation links it adds standard WhizBase variables to the

URL. However, it does not add non-WhizBase variables (form fields) received from
visitor using POST or GET. This variable defines which form variables will be included
in navigation link beside standard vars. The variables will be included

inaform:varname1=varvalue1&varname2=varvalue2

22.2.8 WBL_PrevPage - link text for Previous page link

Syntax
WBL_PrevPage=text to be used as label for link to previous page

Syntax example

WBL_PrevPage=

Valid inputs
Any valid text that can be placed between <a > and including HTML tags (IMG
for example)

Default value

Previous page

Description
This variable defines the text or HTML code that will be used for link to previous page
of the report

22.2.9 WBM_Deleted - message template for reporting deleted records

Syntax

WBM_Deleted=text to be used as report after deleting records

Syntax example
WBM_Deleted= Operation completed! $WBDeleted record(s) removed from
your database!

Valid inputs

Any valid text including HTML tags

Default value
Command successful! $WBDeleted record(s) deleted!

Description
This variable defines the text or HTML code that will be displayed on the report when

WBSP engine completes delete command.

22.2.10 WBM_NoMatch - text for reporting that search returned no records

Syntax

WBM_NoMatch=text to be used as report when recordset contains no records

Syntax example
WBM_NoMatch=<script>alert("Your search
returned no records!");history.back();</script>

Valid inputs

Any valid text including HTML tags

Default value
No matching records!

Description

This variable defines the text or HTML code that will be displayed on the report when
WBSP engine completes query command and recordset contains no records.

22.3 Upload section variables - Subsection [Upload]

This subsection contains variables needed to control file upload using WBSP page.
Using these variables, the developer can control where uploaded files will be saved,

what is maximum size of a single file, what file types can not be uploaded, weather
existing file will be overwritten or not, where to store log data and what prefix to add
to URL of uploaded file. The variables that can be stored in this subsection are (in

alphabetic order):
WB_BaseURL
WB_Disallow

WB_MaxFSize
WB_Overwrite
WB_UploadDir

WB_UploadLog

Here's an example of upload subsection (marked with blue):

[FormFields]

WB_BaseName=biblioA.mdb

WB_AllowMultipart=T

WB_Command=A

WB_UID=ISBN

WB_Redirect=titlesQ.wbsp

WB_RcdSet=Titles

[Upload]

WB_Disallow=![jpg,gif]

WB_UploadDir=images/

WB_Overwrite=T

WB_MaxFSize=24576

WB_UploadLog=upload.log

To learn more about uploading files using WBSP read the "Uploading files using
WBSP" page.

22.3.1 WB_BaseUrl - URL prefix to be added to uploaded file name

Syntax

WB_BaseURL=URL

Syntax example
WB_BaseURL=/images/

Valid inputs
URL can be any valid relative address or absolute address of directory on same or

other server. Absolute address can include protocol

Default value
The URL of the directory where current WBSP file is located

Description

This variable defines an URL prefix added to the value of the field used to upload file.

If WB_BaseURL value is

Value of the form field used to

upload file will be changed
from mypic.gif to

ftp://ftp.myserver.com/pub/ ftp://ftp.myserver.com/pub/mypic.gif

/images/ /images/mypic.gif

undefined
(no WB_BaseURL variable in WBSP file) /pathtowbspfile/mypic.gif

22.3.2 WB_Disallow - list of file types (extensions) that can not be uploaded

Syntax
WB_Disallow=comma-separated list containing file extensions that are not allowed

for upload

Syntax example
WB_Disallow=![jpg,jpeg,gif,png]

Valid inputs
1. comma-separated list of disallowed file extensions in form

ext1,ext2,ext3,...,extN
2. comma-separated list of allowed file extensions in form
![ext1,ext2,ext3,...,extN]

Default value

wbsp

Description
This variable defines file types (extensions) that can not be uploaded using current
WBSP file. It can contain either list of the disallowed file types, or a list of allowed

file types enclosed in square brackets with preceded with exclamation mark

If WB_Disallow value is Current WBSP file will

wbsp,asp,exe,bat,com allow upload of all files except:
*.wbsp
*.asp

*.exe
*.bat
*.com

![jpg,jpeg,gif,png] disallow upload of all files except:
*.jpg

*.jpeg
*.gif
*.png

Important: This variable cannot be sent using HTML form unless you specify value
$form$ (WB_Disallow=$form$) in WBSP file. Setting this variable value to
$form$ could be unwise and very risky decision.

22.3.3 WB_MaxFSize - maximum size for a single uploaded file

Syntax
WB_MaxFSize=maximum number of bytes

Syntax example

WB_MaxFSize=65536

Valid inputs
Any valid integer.

Default value
none (the maximum file size for upload is not limited by default)

Description

This variable defines maximum size (in bytes) of the single file that can be uploaded
using current WBSP file.

22.3.4 WB_Overwrite - overwrite existing file with uploaded one

Syntax
WB_Overwrite=boolean value

Syntax example

WB_Overwrite=T

Valid inputs
T,TRUE,1,ON for True
F,FALSE,0,OFF for False

Default value

FALSE

Description

This variable defines if the file with same name that already exists on the server be
overwritten by newly uploaded file.

If WB_Overwrite value is Existing file with same name will be

TRUE overwritten

FALSE unchanged, and new file will be saved
using unique name generated by WhizBase

Important: This variable cannot be sent using HTML form unless you specify value
$form$ (WB_Overwrite=$form$) in WBSP file. Setting this variable value to

$form$ is not recommended.

22.3.5 WB_UploadDir - destination directory for uploaded files

Syntax
WB_UploadDir=name of the directory

Syntax example

WB_UploadDir=/upldimg/

Valid inputs
Any valid directory name respecting the WhizBase path rules.

Default value
Directory of the current WBSP file

Description

This variable defines the name of the directory on the server where Whizbase will
save files uploaded using current WBSP file.

22.3.6 WB_UploadLog - file name for logging upload activities

Syntax
WB_UploadLog=name of log file

Syntax example

WB_UploadLog=/logs/upload.log

Valid inputs
Any valid file name respecting the WhizBase path rules.

Default value
wbupload.log

Description

This variable defines the name of the file where Whizbase will write log of uploaded
files in format:
Date date when file is uploaded

Filename original (local) file name
Saved as name of the uploaded file
Content-Type MIME type of the uploaded file

Size the size of uploaded file

From IP address and remote host name

23. Error messages

23.1 Common system errors

These errors are not specific to WhizBase but the are related to system
configuration, disk/file access permissions and regional settings.

23.1.1 Error 5 - Invalid procedure call or argument

This error can be generated for various reasons but most usual case is when WBSP

engine receives invalid registration key value.
It can also be caused by invalid argument of $WBFN function.

23.1.2 Error 13 - Type mismatch

WhizBase is not very sensible to variable's data type. However, working with

database fields require proper data type for every field type. This error occures when
Numeric, Boolean and TimeDate field receives value that can not be converted (e.g.
string instead of number or date in invalid format, etc.).

23.1.3 Error 75 - Path/File access error

This error is generated when WhizBase tries to write file in a directory where it has

no write permissions.
To solve this assign the user that starts WhizBase (usually Internet Guest Account)
full access permissions (read/write) to directories that require writing (e.g. upload

directories, directories where log and database files are located, etc.).

23.1.4 Error 429 - ActiveX component can't create object.

This error is generated when DAO, ADO, Scripting server or HTMLMailer are not
installed properly on the web server. If this error is generated by DAO or ADO
try changing the WB_DBObject variable. If all values reports the same error then it is

required to install Jet engineering on the web server.
If error was generated by HTMLMailer then it is required to install WhizBase on the
web server.

23.2 Database errors

These errors are not specific to WhizBase but they are related to database usage.

Their error numbers are between 3000 and 3999 and they can also have a negative
error number. If you can not find the explanation in this manual, please search the
Internet using following search term:

error errornumber

23.2.1 Error 3027 - Driver: Text; produced following error:
Can't update. Database or object is read-only.

Text ISAM (driver) does not support deleting and updating records.
However, it supports adding and reading records so it can be used for all WhizBase

operations that do not require deleting or updating records.

If these features are required use other database type.

23.2.2 Error 3051 - The Microsoft Jet database engine cannot open the file
'<file name>'. It is already opened exclusively by another user, or you need
permission to view its data.

This error is generated when WBSP engine tries to open MS Access database and Jet

engine is not able to complete operation.
Possible causes:
- Your permissions in system.md? file are not valid for required operation. You must

have permission to read data in the specified file in order to view its data. To change
your permission assignments, see your system administrator or the table or query's

creator.
- WhizBase does not have write access on the directory where database is located
and was unable to create <file name>.LDB file. Assign WBSP engine write

permissions over the directory where the database file is located.

23.2.3 Error 3061 - Too few parameters. Expected <number>

In some cases, this message is generated when unknown field names or expressions
are interpreted as query parameters. Be sure to enclose field names containing
spaces or punctuation with square brackets [].

23.2.4 Error 3146 - ODBC--call failed.

This error may occur when the ODBC data source is on a network drive and user is

not connected to the network or network is unavailable to user for any other reason.
Make sure the network is available, and then try the operation again.
If this does not help make sure that user has the necessary permissions to access

the ODBC source and the network drive. Remember that WBSP scripts are executed
by user "internet_user", "nobody", "guest", etc.

23.2.5 Error 3170 - Couldn't find installable ISAM.

This error is generated when WBSP engine is unable to locate required ISAM
libraries.

If WBSP engine is installed properly (no errors reported during the test mode) then
the error is probably caused by mistyped WB_Connect value (check the semicolon at
the end of WB_Connect value).

23.2.6 Error 3265 - Item not found in this collection.

This error is generated when WhizBase tries to access database table or field that

does not exist.
Possible causes:

Table:

- table does not exist - the WB_RcdSet contains mistyped table name. To solve this
check the name(s) of the table(s) defined in WB_RcdSet.
- table name contains dash, underscore, space or other special character. To solve

this enclose table name in square brackets.
Field:
- field does not exist in the recordset. Make sure you spelled the field name

correctly.
- there is more than one field with this name in the recordset (e.g. using complex
recordset generated from two tables having few fields with same name); to solve

this problem use $WBF[tablename.fieldname] and WBF_tablename.fieldname instead
of $WBF[fieldname] and WBF_fieldname.

23.2.7 Error 3633 - Driver: MS Access; produced following error:

Can't load DLL: 'MSJET35.DLL'

This error is generated when web server does not have MS Jet 3.5 database support.
To solve this please install all necessary files on the web server. For more info please
contact us at setup@whizbase.com.

23.3 WhizBase specific errors

23.3.1 Error 5010 - Duplicate value in UID!

This error is generated when user tries to add a record with defined WB_UID

variable, and record with same value in fields defined in WB_UID already exists.
Change the value in field(s) included in WB_UID.

23.3.2 Error 5011 - Empty mailing list recordset!

This error is generated when user tries to execute Mail List command
(WB_Command=L) and resulting recordset is empty.

23.3.3 Error 5012 - Error reading system file <file name>!

This error does not exist since WhizBase v. 4.000

23.3.4 Error 5013 - Illegal referring page!

This error is generated when someone try to execute WhizBase command that

require referrer check either from server that is not included in referrer list (Referrer
check section), or by typing the URL in "Address" field of browser or using
window.open() JavaScript function!

If you want to enable executing command only from authorized web servers
(domains) include server name in referrer line in file Referrer check section.

23.3.5 Error 5014 - Illegal unique identifier! Query returned more than one
record!

This error is generated when user tries to update or delete a record and query

created upon WB_UID field returns more than one record. The solution is to check
again the WB_UID value and to create new combination of database fields for
WB_UID that will uniquely identify every record.

23.3.6 Error 5015 - Illegal unique identifier! Query returned no records!

This error is generated when user tries to update or delete a record and query

created upon WB_UID field returns no records. The record does not exist, try typing
other value for WBF_Fields that identify the record.

23.3.7 Error 5016 - Illegal use of unregistered trial version of WhizBase
engine!

This error does not exist since WhizBase v. 4.000

23.3.8 Error 5017 - Incorrect password!

This error is generated when user submits invalid value for WB_DBOldPass when

executing Change Password command (WB_Command=CP).

23.3.9 Error 5018 - Invalid command string!

This error is generated when WBSP engine does not recognize WB_Command value.

23.3.10 Error 5019 - Invalid data passed to UrlDecode() function.

This error is generated when a browser parse form data containing the percentage
(%) character to WBSP engine. E.g. if the browser mistakenly called WBSP file with

the following
http://www.domain.com/somefile.wbsp?WB_BaseName=base.mdb&WB_Query=100
% free&...

If you use form for sending data to WBSP file your browser and WBSP engine will
take care of transferring the data.

23.3.11 Error 5020 - Invalid data passed to UrlEncode() function.

Reserved for future use. If you get this error message, please send us description of
operation that caused this error!

23.3.12 Error 5021 - Invalid value for True/False field!

This error is generated when database field of type Boolean (True/False) gets invalid

value in WBF_field. Valid settings are:
for True value:

-1
1
T

TRUE
ON
Y

YES

for False value:

0 (zero)
NO

N
OFF
F

FALSE
Any other value will generate this error message!!

23.3.13 Error 5022 - New password check failed!

This error is generated when user submits different values for WB_DBNewPass and
WB_DBNPassCh when executing Change Password command (WB_Command=CP).

23.3.14 Error 5023 - No data received! Nothing to add to database!

This error is generated when user tries to add an empty record (by sending an Add

command with empty value in all WBF_fields). At least one database field
(WBF_fields) must have value set.

23.3.15 Error 5024 - Query string empty! Unable to identify record!

This error is generated user tries to update (edit) record without specifying the vale
for every database field defined in WB_UID variable.

Executing update command is possible only if all fields defined in WB_UID have value
in WBF_Fields.

E.g.
If
wb_uid=Fname,Lname

then WBF_Fname and WBF_Lname must not be empty.

23.3.16 Error 5025 - Record(s) can't be added; no insert permission on
<recordset>!

This error does not exist since WhizBase v. 4.000

23.3.17 Error 5026 - Record(s) can't be deleted; no delete permission on
<recordset>!

This error does not exist since WhizBase v. 4.000

23.3.18 Error 5027 - Record(s) can't be edited; no update permission on

<recordset>!

This error does not exist since WhizBase v. 4.000

23.3.19 Error 5028 - Record(s) can't be read; no read permission on
<recordset>!

This error does not exist since WhizBase v. 4.000

23.3.20 Error 5029 - Required form field 'WB_BaseName' missing!

Neither your form nor configuration file have specified value for variable

WB_BaseName and you are trying to execute command that requires this value to be
set.
Check your spelling, and make sure that you did not forget to put the field in

form/config file.

23.3.21 Error 5030 - Required form field 'WB_Pass' missing!

Neither your form nor configuration file have specified value for variable WB_Pass.
This value is required when WB_System variable is not empty.
Check your spelling, and make sure that you did not forget to put the field in

form/config file.

23.3.22 Error 5031 - Required form field 'WB_RcdSet' missing!

Neither your form nor configuration file have specified value for variable WB_RcdSet
and you are trying to execute command that requires this value to be set.

Check your spelling, and make sure that you did not forget to put the field in
form/config file.

23.3.23 Error 5032 - Required form field 'WB_UID' missing! Unable to
identify record!

This error is generated when user tries to update (edit) record with WB_UID field

empty. WB_UID must have database field name (or comma-separated names of the
database fields) that uniquely identify every single record. For more information
please read the explanation for WB_UID variable (section FormFields).

23.3.24 Error 5033 - Required form field 'WB_Usr' missing!

Neither your form nor configuration file have specified value for variable WB_Usr.

This value is required when WB_System variable is not empty.
Check your spelling, and make sure that you did not forget to put the field in
form/config file.

23.3.25 Error 5034 - Required form field(s) missing!

This error is generated when user submits the form without entering the value for

field (or fields) defined in WB_Required variable.

23.3.26 Error 5035 - Required WB_UID member field <field name> missing!
Unable to identify record!

This error is generated when WB_UID is defined and user tries to add, update or
delete record but does not provide a value for all fields defined in WB_UID.

When WB_UID is defined none of the form fields (WBF_Fields) used in WB_UID
variable cannot be left empty when executing add, update or delete command.

23.3.27 Error 5036 - Syntax error in $WBFN: <function>!

This error is generated when report function $WBFN receives unrecognized

argument(s).

23.3.28 Error 5037 - Test mode disabled!

This error does not exist since WhizBase v. 4.000

23.3.29 Error 5038 - Unable to execute mail operation! WB_MailServer
missing!

This error is generated when WhizBase does not get valid WB_MailServer variable
and email-related operation is required.

23.3.30 Error 5039 - Unable to select mail list mode. Received values for

both WB_ToField and WB_BCCField. Please remove one!

This error is generated when user tries to execute Mail List command
(WB_Command=L) with values set both for WB_ToField and WB_BCCField. When

executing L command WhizBase checks these fields to determine what kind of list to
generate - if both fields have value WhizBase cannot decide what to do (there is no
default method).

23.3.31 Error 5040 - User not found!

This error does not exist since WhizBase v. 4.000

23.3.32 Error 5041 - Unable to send mail to mailing list. Both WB_ToField

and WB_BCCField are empty!

This error is generated when user tries to execute Mail List command
(WB_Command=L) with no values for both WB_ToField and WB_BCCField variables.

23.3.33 Error 5042 - Report template file <TemplateName> not found!

This error is generated when WBSP engine is not able to find external template file
defined in variable WB_TempName.

23.3.34 Error 5043 - Required field WB_Config missing!

This error does not exist since WhizBase v. 4.000

23.3.35 Error 5044 - Configuration file <ConfigName> not found!

This error does not exist since WhizBase v. 4.000

23.3.36 Error 5045 - Absolute path not allowed! File name: <FileName>

This error is generated when author tries to use absolute path on virtual server that

does not have absolute paths enabled in file wbsp.ssc.

23.3.37 Error 5046 - Error in script file <ScriptFile>

This error is generated by scripting host when script specified in $WBRun function

contains the error. WBSP provides detailed error report and processed script code
saved in temporary file.

23.3.38 Error 5047 - Multipart content not allowed!

This error is generated when multipart form sends the data to WBSP file that does
not have WB_AllowMultipart variable set to True.

23.3.39 Error 5048 - Server <ServerName> does not support file upload!

This error is generated when author tries to use file upload on virtual server that

does not have file upload enabled in file wbsp.ssc.

23.3.40 Error 5049 - File too large!

This error is generated when visitor tries to upload file that is larger than value
specified in WB_MaxFSize variable.

23.3.41 Error 5050 - Ilegal file type!

This error is generated when visitor tries to upload file with file extension specified in

WB_Disallow variable.

23.3.42 Error 5051 - Ilegal scripting language!

This error is generated when author tries to use $WBRun function on virtual server
that does not have file execute enabled in file wbsp.ssc, or using scripting language
that is not included in variable Execute in wbsp.ssc.

23.3.43 Error 5052 - Ilegal script method!

This error does not exist since WhizBase v. 4.000

23.3.44 Error 5053 - Server <server name> does not support WBSP!

This error is generated when author tries to use WBSP files on virtual server that

does not allow execution of WBSP files - variable DisableWB set to True in wbsp.ssc.

23.3.45 Error 5054 - WB_Order does not start with WB_ChangeHFOn

This error is generated when both variables exist and fields specified in
WB_ChangeHFOn are not the same as starting fields in WB_Order.

23.3.46 Error 5055 - This WBSP project is not registered for use with
<HostName> virtual host!

This error is generated when using protected WBSP file on non-authorized domain.

23.3.47 Error 5056 - $WBMREPL arguments do not match!

This error is generated when $WBMREPL function receives different number of

comma-separated elements in source and target array.

23.3.48 Error 5057 - Required form field WB_FileName missing!

This error is generated when WBSP tries to execute command DF or WF and neither
form nor configuration file have specified value for variable WB_FileName.

23.3.49 Error 5058 - Required form field WB_KeyName missing!

This error is generated when WBSP tries to execute command WF and neither form
nor configuration file have specified value for variable WB_KeyName.

23.3.50 Error 5059 - Required form field WB_Section missing!

This error is generated when WBSP tries to execute command WF and neither form

nor configuration file have specified value for variable WB_Section.

23.3.51 Error 5060 - Unable to delete file <filename>! File not found

This error is generated when WBSP tries to execute command DF and specified file
does not exist.

23.3.52 Error 5061 - Error writing file <filename>

This error is generated when WBSP tries to execute command WF and fails for any

reason.

23.3.53 Error 5062 - Server does not support writing files!

This error is generated when author tries to write file on virtual server that does not
have file commands enabled in file wbsp.ssc.

23.3.54 Error 5063 - Server does not support deleting files!

This error is generated when author tries to delete file on virtual server that does not
have file commands enabled in file wbsp.ssc.

23.3.55 Error 5064 - Wrong IP range string:<IPAddrRange>

This error is generated when file defined in WB_IPListFile contians invalid value for IP

range. Valid formats are:
A.B.C.D
A.B.*.*

A.B.C.D - B.D.D.D
A.B.C.D/N

It is invalid to combine wildcard (*) and LowAddr-HiAddr range like this:
A.B.*.* - C.D.D.D

23.3.56 Error 5065 - IP authentication failed!

This error is generated when user with invalid IP address (REMOTE_ADDR) tries to

access WBSP file protected with IP address verification system.

23.3.57 Error 5066 - WB_UID for multi update must not contain field list!
Unable to identify records!

This error is generated when variable WB_UID contains more than one field, and
WB_Command is set to MU (Multi update).

23.3.58 Error 5067 - Different size of WBF form field arrays! Field <field

name>.

This error is generated when WhizBase receives an arrays of form fields used for
addition or updating of multiple records in a single pass, and when one (or more) of

the WBF_ form field arrays have different number of elements.

23.3.59 Error 5068 - Invalid IP address <IP Address>! Dotted decimal
values must be between 0 and 255

This error is generated when the IP list file contain an IP address with invalid decimal
value (less then 0 or greater than 255).

23.3.60 Error 5069 - WB_KeyName and WB_KeyValue arrays do not match!

This error is generated when the user tries to write more than one key values using

write file command (WB_Command=WF) and separator character (WB_Separator)
and WB_KeyValue and WB_KeyName variables contain different number of elements
separated by character defined in WB_Separator.

23.3.61 Error 5070 - Invalid value for the WB_DBObject!

This error is generated when variable ADOConnectionString is set to false and the

value forwarded to WB_DBObject is invalid. WB_DBObject can contain one of the
following values: d35, d36, A35, A40 or A07.

23.3.62 Error 5071 - Invalid value for the ADO connection string or
WB_DBObject!

This error is generated when WB_DBObject receives unrecognized argument(s). The

cause of this error can also be a syntax error in ADO Connection String.

23.3.63 Error 5072 - Security string missing

This error is generated when the user tries to start WBSP web page that does not
start with the security string defined in CGISecurityString variable.

23.3.64 Error 5073 - Invalid extension

This error is generated when the user tries to execute WBSP in CGI mode with file
extension different than the one defined in ActivateCGIByExt variable.

23.3.65 Error 5074 - Invalid numeric argument for $WBErr function! Use

numbers from 6000 to 65535!

This error is generated when WBSP tries to process function $WBERR with errnum
argument outside of 6000-65535 range.

23.3.66 Error 5075 - Syntax error

This error is generated when WBSP tries to process nested function with syntax error
(usually illegal use of # character).

23.3.67 Error 5076 - WB_Redirect required!

This error is generated when WBSP file that uses WB_Destination variable does not

have WB_Redirect variable defined.

23.3.68 Error 5077 - Too many instances for server <server name>!

This error is generated when number of instances of WBSP.EXE started by single
virtual server is greater than number defined in server configuration variable

MaxInstances.

23.3.69 Error 5078 - $WBCASE function syntax error

This error is generated when:
1. $WBCASE function does not have all five arguments
or

2. arguments "condition list" and "result list" do not have same number of items.

23.3.70 Error 5079 - Script time out error

This error is generated when single WBSP page takes more time to execute than it is
defined in WB_TimeOut variable.

23.3.71 Error 5080 - Invalid time out interval

This error is generated when WB_TimeOut variable receives value less than 0 or
greater than 86400.

23.3.72 Error 5081 - Invalid assign method! Use WBAAdd[] function.

This error is generated when you try to set value of an array element using $wbsetv

instead of $wbaadd function.

23.3.73 Error 5082 - Invalid path!

This error is generated when WhizBase receives an invalid path to any file in any
variable or function.

23.3.74 Error 5083 - Empty SMS list recordset!

This error is generated when user tries to execute SMS List command
(WB_Command=SMS with WB_SMSField) and resulting recordset is empty.

23.3.75 Error 5084 - Required form field 'WB_SMSPort' missing!

This error is generated when user tries to execute WB_Command SMS

and WB_SMSPort variable is empty. For more information please read the
explanation for WB_SMSPort variable (section FormFields).

23.3.76 Error 5085 - Invalid character passed to WBCAPTCHA function!

This error is generated when WhizBase function $WBCAPTCHA receives an invalid
character in SourceText parameter. Valid characters are

0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ.

23.3.77 Error 5086 - Duplicate Sub Definition! Sub name: nameofsubroutine!

This error is generated when WhizBase finds subroutine definition with specified
name that is already used for some other subroutine. The scope of subroutines is

main wbsp file and all sub reports and include files called from main wbsp file.

23.3.78 Error 5087 - Undefined subroutine nameofsubroutine!

This error is generated when the subroutine called from WhizBase function $WBSUB
does not exist. Check if you have spelled the subroutine name correctly, and if the
subroutine is defined in main wbsp file or in any sub reports and include files called

from main wbsp file.

23.3.79 Error 5088 - Invalid hash algorithm!

This error is generated when WhizBase function $WBHASH receives an
invalid algorithm type in AlgType parameter. Valid types are MD5, SHA1, SHA256,
SHA384, SHA512.

23.3.80 Error 5089 - Invalid algorithm!

This error is generated when WhizBase

functions $WBENCRYPT OR $WBDECRYPT receive an invalid algorithm type
in AlgType parameter. Valid types are AES, AES192, AES256, BF (Blowfish), CAST,
DES, RC2, RC4, RC5, 3DES (TripleDES), UC (UNIXcrypt).

23.3.81 Error 5090 - Unrecognized encrypted format! Check the input type!

This error is generated when WhizBase function $WBDECRYPT receives input data

that does not match InputType parameter (e.g. passing hexadecimal input data with
InputType parameter set to B).

23.3.82 Error 5091 - Error processing JSON

This error is generated when WhizBase tries to process JSON code using any of these
functions: $WBJSON, $WBJSONLEN or $WBJSONELEM and JSON parser returns an

error. WhizBase will also display JSON source code and original error description.

23.3.83 Error 5092 - Missing parameter function name in $WBIRUN
function!

This means that function $WBIRUN is missing second parameter, the name of
function that should be executed.

24. Appendixes

24.1 Named Formats (format string definitions)

Format Name Description

General Number Display number with no thousand separator.

Currency Display number with thousand separator, if appropriate;

display two digits to the right of the decimal separator. Output
is based on system locale settings.

Fixed Display at least one digit to the left and two digits to the right
of the decimal separator.

Standard Display number with thousand separator, at least one digit to
the left and two digits to the right of the decimal separator.

Percent Display number multiplied by 100 with a percent sign (%)
appended to the right; always display two digits to the right of
the decimal separator.

Scientific Use standard scientific notation.

Yes/No Display No if number is 0; otherwise, display Yes.

True/False Display False if number is 0; otherwise, display True.

On/Off Display Off if number is 0; otherwise, display On.

General Date Display a date and/or time. For real numbers, display a date

and time, for example, 4/3/93 05:34 PM. If there is no
fractional part, display only a date, for example, 4/3/93. If
there is no integer part, display time only, for example, 05:34

PM. Date display is determined by your system settings.

Long Date Display a date according to your system's long date format.

Medium Date Display a date using the medium date format appropriate for
the language version of the host application.

Short Date Display a date using your system's short date format.

Long Time Display a time using your system's long time format; includes

hours, minutes, seconds.

Medium Time Display time in 12-hour format using hours and minutes and

the AM/PM designator.

Short Time Display a time using the 24-hour format, for example, 17:45.

24.2 User-Defined Formats (format string definitions)

Character Description

@ Character placeholder. Display a character or a space. If the string
has a character in the position where the at symbol (@) appears in
the format string, display it; otherwise, display a space in that

position. Placeholders are filled from right to left unless there is an
exclamation point character (!) in the format string.

& Character placeholder. Display a character or nothing. If the string
has a character in the position where the ampersand (&) appears,
display it; otherwise, display nothing. Placeholders are filled from

right to left unless there is an exclamation point character (!) in the
format string.

< Force lowercase. Display all characters in lowercase format.

> Force uppercase. Display all characters in uppercase format.

! Force left to right fill of placeholders. The default is to fill
placeholders from right to left.

0 Digit placeholder. Display a digit or a zero. If the expression has a
digit in the position where the 0 appears in the format string, display
it; otherwise, display a zero in that position. If the number has fewer

digits than there are zeros (on either side of the decimal) in the
format expression, display leading or trailing zeros. If the number

has more digits to the right of the decimal separator than there are
zeros to the right of the decimal separator in the format expression,
round the number to as many decimal places as there are zeros. If

the number has more digits to the left of the decimal separator than
there are zeros to the left of the decimal separator in the format
expression, display the extra digits without modification.

Digit placeholder. Display a digit or nothing. If the expression has a
digit in the position where the # appears in the format string,
display it; otherwise, display nothing in that position. This symbol

works like the 0 digit placeholder, except that leading and trailing
zeros are not displayed if the number has the same or fewer digits

than there are # characters on either side of the decimal separator
in the format expression.

. Decimal placeholder. In some locales, a comma is used as the

decimal separator. The decimal placeholder determines how many
digits are displayed to the left and right of the decimal separator. If
the format expression contains only number signs to the left of this

symbol, numbers smaller than 1 begin with a decimal separator. To
display a leading zero displayed with fractional numbers, use 0 as
the first digit placeholder to the left of the decimal separator. The

actual character used as a decimal placeholder in the formatted
output depends on the Number Format recognized by your system.

% Percentage placeholder. The expression is multiplied by 100. The
percent character (%) is inserted in the position where it appears in
the format string.

, Thousand separator. In some locales, a period is used as a thousand
separator. The thousand separator separates thousands from

hundreds within a number that has four or more places to the left of
the decimal separator. Standard use of the thousand separator is

specified if the format contains a thousand separator surrounded by

digit placeholders (0 or #). Two adjacent thousand separators or a
thousand separator immediately to the left of the decimal separator
(whether or not a decimal is specified) means "scale the number by

dividing it by 1000, rounding as needed." For example, you can use
the format string "##0,," to represent 100 million as 100. Numbers
smaller than 1 million are displayed as 0. Two adjacent thousand

separators in any position other than immediately to the left of the
decimal separator are treated simply as specifying the use of a
thousand separator. The actual character used as the thousand

separator in the formatted output depends on the Number Format
recognized by your system.

E-
E+
e-

e+

Scientific format. If the format expression contains at least one digit
placeholder (0 or #) to the right of E-, E+, e-, or e+, the number is
displayed in scientific format and E or e is inserted between the

number and its exponent. The number of digit placeholders to the
right determines the number of digits in the exponent. Use E- or e-
to place a minus sign next to negative exponents. Use E+ or e+ to

place a minus sign next to negative exponents and a plus sign next
to positive exponents.

- + $ () Display a literal character. To display a character other than one of

those listed, precede it with a backslash (\) or enclose it in double
quotation marks (" ").

\ Display the next character in the format string. To display a
character that has special meaning as a literal character, precede it
with a backslash (\). The backslash itself is not displayed. Using a

backslash is the same as enclosing the next character in double
quotation marks. To display a backslash, use two backslashes (\\).
Examples of characters that cannot be displayed as literal characters

are the date-formatting and time-formatting characters (a, c, d, h,
m, n, p, q, s, t, w, y, / and :), the numeric-formatting characters (#,

0, %, E, e, comma, and period), and the string-formatting
characters (@, &, <, >, and !).

"ABC" Display the string inside the double quotation marks (" "). To include

a string in format from within code, you must use Chr(34) to enclose
the text (34 is the character code for a quotation mark (")).

: Time separator. In some locales, other characters may be used to
represent the time separator. The time separator separates hours,
minutes, and seconds when time values are formatted. The actual

character used as the time separator in formatted output is
determined by your system settings.

/ Date separator. In some locales, other characters may be used to
represent the date separator. The date separator separates the day,
month, and year when date values are formatted. The actual

character used as the date separator in formatted output is
determined by your system settings.

c Display the date as ddddd and display the time as ttttt, in that
order. Display only date information if there is no fractional part to
the date serial number; display only time information if there is no

integer portion.

d Display the day as a number without a leading zero (1 – 31).

dd Display the day as a number with a leading zero (01 – 31).

ddd Display the day as an abbreviation (Sun – Sat).

dddd Display the day as a full name (Sunday – Saturday).

ddddd Display the date as a complete date (including day, month, and
year), formatted according to your system's short date format

setting. For Microsoft Windows, the default short date format is
m/d/yy.

dddddd Display a date serial number as a complete date (including day,
month, and year) formatted according to the long date setting
recognized by your system. For Microsoft Windows, the default long

date format is mmmm dd, yyyy.

w Display the day of the week as a number (1 for Sunday through 7

for Saturday).

ww Display the week of the year as a number (1 – 54).

m Display the month as a number without a leading zero (1 – 12). If m
immediately follows h or hh, the minute rather than the month is
displayed.

mm Display the month as a number with a leading zero (01 – 12). If m
immediately follows h or hh, the minute rather than the month is

displayed.

mmm Display the month as an abbreviation (Jan – Dec).

mmmm Display the month as a full month name (January – December).

q Display the quarter of the year as a number (1 – 4).

y Display the day of the year as a number (1 – 366).

yy Display the year as a 2-digit number (00 – 99).

yyyy Display the year as a 4-digit number (100 – 9999).

h Display the hour as a number without leading zeros (0 – 23).

hh Display the hour as a number with leading zeros (00 – 23).

n Display the minute as a number without leading zeros (0 – 59).

nn Display the minute as a number with leading zeros (00 – 59).

s Display the second as a number without leading zeros (0 – 59).

ss Display the second as a number with leading zeros (00 – 59).

t t t t t Display a time as a complete time (including hour, minute, and

second), formatted using the time separator defined by the time
format recognized by your system. A leading zero is displayed if the
leading zero option is selected and the time is before 10:00 A.M. or

P.M.

AM/PM Use the 12-hour clock and display an uppercase AM with any hour

before noon; display an uppercase PM with any hour between noon
and 11:59 P.M.

am/pm Use the 12-hour clock and display a lowercase AM with any hour
before noon; display a lowercase PM with any hour between noon
and 11:59 P.M.

A/P Use the 12-hour clock and display an uppercase A with any hour
before noon; display an uppercase P with any hour between noon

and 11:59 P.M.

a/p Use the 12-hour clock and display a lowercase A with any hour

before noon; display a lowercase P with any hour between noon and

11:59 P.M.

AMPM Use the 12-hour clock and display the AM string literal as defined by
your system with any hour before noon; display the PM string literal

as defined by your system with any hour between noon and 11:59
P.M. AMPM can be either uppercase or lowercase, but the case of the
string displayed matches the string as defined by your system

settings. For Microsoft Windows, the default format is AM/PM.

24.3 Format expression rules

A format expression for strings can have one section or two sections separated by a
semicolon (;).

If you use The result is

One section only The format applies to all string data.

Two sections The first section applies to string data, the second to Null
values and zero-length strings ("").

A user-defined format expression for numbers can have from one to four sections
separated by semicolons. If the format argument contains one of the named numeric

formats, only one section is allowed.

If you use The result is

One section only The format expression applies to all values.

Two sections The first section applies to positive values and zeros, the
second to negative values.

Three sections The first section applies to positive values, the second to
negative values, and the third to zeros.

Four sections The first section applies to positive values, the second to

negative values, the third to zeros, and the fourth to Null
values.

24.4 HTML form and input elements

24.4.1 HTML from

The Form element is used to delimit a data input form. There can be several forms in
a single document, but the Form element cannot be nested. (i.e. a form cannot

contain another form)

<FORM ACTION="_URL_" METHOD="GET|POST" ENCTYPE="MIME type">
The ACTION attribute is a URL specifying the location to which the contents of the
form data fields are submitted to elicit a response. As mentioned before, this could

be simply a direction to an e-mail address, but generally, would be used to point
towards some kind of server based CGI script/application that handles the forwarding
of form data. If the ACTION attribute is missing, the URL of the document itself is

assumed. The way data is submitted varies with the access protocol of the URL to

which the form data is sent and with the values of the METHOD and ENCTYPE

attributes.

Generally, the METHOD attribute specifies a method of accessing the URL specified in
the ACTION attribute and will be either GET or POST. The GET method is ideal for
form submission where the use of the form data does not require external

processing. For example, with database searches, there is no lasting effect caused by
the query of the form (that is, the query runs its search through the database and
reports the results). However, where the form is used to provide information for

example, that updates a database, then the POST method should be used, with the
ACTION attribute pointing to a CGI script that executes the form data processing.

The ENCTYPE specifies the media type used to encode the form data. The default

ENCTYPE is the MIME type 'application/x-www-form-urlencoded'

The <FORM> element can also accept the TARGET attribute (as in <A> elements),
to specify what window is used for any form feedback. It can take the following
values :

window_name

The name of any window specified by a <FRAME> element, or by using the
window.open scripting method. If a window_name is used which does not correlate
to a previously defined window, then a new window is created and NAMED according

the the window name used in the TARGET attribute. This new window can then be
referenced using its new name.
_self

Using this reserved keyword value, would cause any form feedback page to be
loaded into the window that currently contains the form.
_parent

Using this reserved keyword value, would cause any form feedback page to be
loaded into the window that is the parent of the window currently containing the
form. i.e. if the form's window is part of a framed document, it would load into the

window controlled by the <FRAMESET> element definitions that control the form's
current window.
_top

Using the reserved keyword value would cause the form feedback page to be loaded
into the topmost window, clearing any currently existing framed windows.
_blank

Using this reserved keyword value would cause the form feedback page to be loaded
into a newly created window. Using this value is the same as using
TARGET="window_name" where the window_name used is not a previously defined

window. NOTE: Unlike using the window_name using a previously undefined window
name, using _blank will not name the new window for future use.
The <FORM> can also take the NAME attribute, which can be used to set the name

of the element for scripting purposes.

24.4.2 Input elements

The Input element represents a field whose contents may be edited or activated by
the user.

Attributes of the Input element:

ALIGN

Vertical alignment of the image. For use only with TYPE=IMAGE in HTML level 2. The
possible values are exactly the same as for the ALIGN attribute of the
element.

CHECKED

Indicates that a checkbox or radio button is selected. Unselected checkboxes and
radio buttons do not return name/value pairs when the form is submitted.

MAXLENGTH
Indicates the maximum number of characters that can be entered into a text field.

This can be greater than specified by the SIZE attribute, in which case the field will
scroll appropriately. The default number of characters is unlimited.

NAME

Symbolic name used when transferring the form's contents. The NAME attribute is
required for most input types and is normally used to provide a unique identifier for
a field, or for a logically related group of fields. The name given to the element can

also be used to reference it for scripting purposes.

SIZE
Specifies the size or precision of the field according to its type. For example, to
specify a field with a visible width of 24 characters:

INPUT TYPE="text" SIZE="24"

SRC
To be used with the TYPE=IMAGE , this attribute represents a URL specifying an the
desired image.

TYPE

Defines the type of data the field accepts. Defaults to free text. Several types of
fields can be defined with the type attribute:

BUTTON: This can be used to embed buttons directly into HTML documents, that add
functionality when used in conjunction with Visual Basic Script, or JavaScript. The

NAME attribute is used to give the button a unique name, which can be used to set
its function in the script. The VALUE attribute specifies the text that is displayed on
the button in the document.

CHECKBOX: Used for simple Boolean attributes (where a field will be chosen, or not),

or for attributes that can take multiple values at the same time. The latter is
represented by a number of checkbox fields each of which has the same name. Each
selected checkbox generates a separate name/value pair in the submitted data, even

if this results in duplicate names. The default value for checkboxes is "on". It
requires the NAME and VALUE attributes, optional attributes being CHECKED.

HIDDEN: With this input type, no field is presented to the user, but the content of
the field is sent with the submitted form. This value may be used to transmit state

information about client/server interaction.

IMAGE: An image field upon which you can click with a pointing device, causing the
form to be immediately submitted. The co-ordinates of the selected point are
measured in pixel units from the upper-left corner of the image, and are returned

(along with the other contents of the form) in two name/value pairs. The x-co-

ordinate is submitted under the name of the field with .x appended, and the y- co-
ordinate is submitted under the name of the field with .y appended. The NAME
attribute is required. The image itself is specified by the SRC attribute, exactly as for

the Image element.

PASSWORD: is the same as the TEXT attribute, except that text is not displayed as it
is entered.

RADIO: is used for attributes that accept a single value from a set of alternatives.
Each radio button field in the group should be given the same name. Only the
selected radio button in the group generates a name/value pair in the submitted

data. Radio buttons require an explicit VALUE and NAME attribute. CHECKED is an
optional attribute and can be used to specify which options are selected for initial

form display.

RESET: is a button that when pressed resets the form's fields to their specified initial
values. The label to be displayed on the button may be specified just as for the
SUBMIT button.

SUBMIT: is a button that when pressed submits the form. You can use the VALUE

attribute to provide a non- editable label to be displayed on the button. The default
label is browser-specific. If a SUBMIT button is pressed in order to submit the form,
and that button has a NAME attribute specified, then that button contributes a

name/value pair to the submitted data. Otherwise, a SUBMIT button makes no
contribution to the submitted data.

TEXT: is used for a single line text entry fields. It should be used in conjunction with
the SIZE and MAXLENGTH attributes to set the maximum amount of text that can be

entered. For textual input that requires multiple lines, the <TEXTAREA> element for
text fields which can accept multiple lines. Explicit VALUE and NAME attributes are
also required.

TEXTAREA: is used for multiple-line text-entry fields. Use in conjunction with the

SIZE and MAXLENGTH attributes. It is better to use the <TEXTAREA> element for
such text entry boxes.

FILE: is used with forms of ENCTYPE "multipart/form-data".
This allows the inclusion of files with form information, which could prove invaluable

for example, for companies providing technical support, or service providers,
requesting data files.

VALUE
When used with TYPE= ... attributes, this attribute sets the initial displayed value of

the field if it displays a textual or numerical value. If the TYPE= ... attribute is one
which only allows Boolean values (i.e. chosen, or not chosen) then this specifies the
value to be returned when the field is selected.

24.5 SQL patterns

Character(s) in pattern Matches in expression

DAO ADO

? (question mark) _ (underscore) Any single character

* (asterisk) % (percent sign) Zero or more characters

Any single digit (0-9)

[charlist] Any single character in charlist

[!charlist] Any single character not in charlist

A group of one or more characters (charlist) enclosed in brackets ([]) can be used to
match any single character in expression and can include almost any characters in
the ANSI character set, including digits. In fact, the special characters left bracket

([), question mark (?), underscore(_), number sign (#), percent sign (%) and
asterisk (*) can be used to match themselves directly only by enclosing them in
brackets. The right bracket (]) cannot be used within a group to match itself, but it

can be used outside a group as an individual character.
In addition to a simple list of characters enclosed in brackets, charlist can specify a
range of characters by using a hyphen (-) to separate the upper and lower bounds of

the range. For example, [A-Z] in pattern results in a match if the corresponding
character position in expression contains any of the uppercase letters in the range A
through Z. Multiple ranges are included within the brackets without any delimiting.

For example, [a-zA-Z0-9] matches any alphanumeric character.
Other important rules for pattern matching include the following:
An exclamation mark (!) at the beginning of charlist means that a match is made if

any character except the ones in charlist are found in expression. When used outside
brackets, the exclamation point matches itself.
The hyphen (-) can appear either at the beginning (after an exclamation mark if one

is used) or at the end of charlist to match itself. In any other location, the hyphen is
used to identify a range of ANSI characters.
When a range of characters is specified, they must appear in ascending sort order

(from lowest to highest). [A-Z] is a valid pattern, but [Z-A] is not.
The character sequence [] is ignored; it is considered to be a zero-length string. The
following examples show how you can use Like to test expressions for different

patterns.

Kind of matching With this

pattern

This expression

returns True

This expression

returns False

Multiple characters a*a "aa", "aBa", "aBBBa" "aBC"

Special character a[*]a "a*a" "aaa"

Multiple characters ab* "abcdefg", "abc" "cab", "aab"

Single character a?a "aaa", "a3a", "aBa" "aBBBa"

Single digit a#a "a0a", "a1a", "a2a" "aaa", "a10a"

Range of characters [a-z] "f", "p", "j" "2", "&"

Outside a range [!a-z] "9", "&", "%" "b", "a"

Not a digit [!0-9] "A", "a", "&", "~" "0", "1", "9"

Combined a[!b-m]# "An9", "az0", "a99" "abc", "aj0"

Single special to double [?] "ae", "AE", "?" "Ä", "A"

	1. Introduction
	2. What is WhizBase
	3. What's new in version 7
	4. Technical information
	5. Virtual directories
	6. CGI mode
	7. Test mode
	8. Escape characters
	9. Comments
	10. Subroutines
	11. Exceptions
	12. Path rules
	13. Installation
	13.1 Installing WhizBase on Windows with Abyss Web Server
	13.2 Installing WhizBase on Windows with Apache
	13.3 Windows NT/2000/2003 and IIS 4, 5, 6 or newer and PWS 4 on NT Workstation or W2K non server editions
	13.4 IIS 7
	13.5 Installing WhizBase on Windows with Netscape servers.
	13.6 Installing WhizBase on Windows with OmniHTTPd Server
	13.7 Installing WhizBase on Windows with Xitami

	14. WBSP Server Side Configuration (wbsp.ssc)
	14.1 Default section
	14.2 Registration section
	14.3 Server configuration section
	14.4 Servers (virtual hosts) section
	14.5 Server configuration variables
	14.5.1 AbsolutePath
	14.5.2 ActivateCGIByExt
	14.5.3 ADOConnectionString
	14.5.4 AllowedPaths
	14.5.5 CacheDir
	14.5.6 CGISecurityString
	14.5.7 DefaultDocument
	14.5.8 Developer
	14.5.9 DisableWB
	14.5.10 Execute
	14.5.11 FileCommands
	14.5.12 HiddenEnvVars
	14.5.13 HideDocuments
	14.5.14 MaxInstances
	14.5.15 RegCode
	14.5.16 ScriptTimeOutSec
	14.5.17 SessionFile
	14.5.18 SessionIdleTime
	14.5.19 TimeOutSec
	14.5.20 Upload
	14.5.21 UseServerKey
	14.5.22 VirtualDirHomeRef

	15. Getting started
	15.1 Your first WBSP page
	15.2 Something useful
	15.3 Simple database example

	16. How to...
	16.1 The simplest database example
	16.2 1-2-3 example
	16.3 Displaying formatted records from database table
	16.4 Displaying records from joined tables
	16.5 Creating search form
	16.6 Displaying records in XML format
	16.7 Simple upload example
	16.8 Advanced upload example

	17. WhizBase Report Template (WBSP file)
	17.1 Configuration section
	17.2 Top section
	17.3 Detail section
	17.4 Header and Footer sections
	17.5 Bottom section
	17.6 WhizBase SubReports

	18. Configuraton section subsections
	18.1 Subsection [Include]
	18.1.1 Default.inc

	18.2 Subsection [FormFields]
	18.3 Subsection [Upload]
	18.4 Subsection [MsgAndLbl]
	18.5 Section [UserData]
	18.6 Section [ErrorMessages]
	18.7 Referrer Check Section

	19. Update prefixes
	19.1 $WBNULL$ - delete value
	19.2 $WB-$ - subtract from value
	19.3 $WB*$ - multiply value by
	19.4 $WB/$ - divide value with
	19.5 WBA - append text to value
	19.6 WBP - add to value
	19.7 WBR - remove text from value

	20. Report tags
	20.1 $WBAdmin
	20.2 $WBCurrDir - current directory
	20.3 $WBCurrDirA - current directory absolute path
	20.4 $WBDocRoot - root directory of virtual host
	20.5 $WBFileReport
	20.6 $WBFULID - upload form ID
	20.7 $WBTimer - system timer
	20.8 Database related tags
	20.8.1 $WBCQuery - URL encoded query expression
	20.8.2 $WBDeleted - number of deleted records
	20.8.3 $WBQuery - query expression
	20.8.4 $WBRecordBreak - force next record

	20.9 Error message tags
	20.9.1 $WBErrDesc - full error description
	20.9.2 $WBErrMail - email address shown in error report
	20.9.3 $WBErrMsg - error description (text only)
	20.9.4 $WBErrNum - error number

	20.10 Navigation tags
	20.10.1 $WBFirstPage - navigation link to first report page
	20.10.2 $WBLastPage - navigation link to last report page
	20.10.3 $WBNavigator - full set of report navigation links
	20.10.4 $WBNextPage - navigation link to next report page
	20.10.5 $WBPageNums - links to separate report pages
	20.10.6 $WBPrevPage - navigation link to previous report page

	20.11 Session tags
	20.11.1 $WBACTSES - active sessions

	21. Functions
	21.1 Difference between report and input functions
	21.2 $WBAADD - add element to array
	21.3 $WBACHG - change value of array element
	21.4 $WBALEN - array length
	21.5 $WBALIDX - last array index
	21.6 $WBASRC - search array elements for specified value
	21.7 $WBAPRN - concatenate elements of array
	21.8 $WBB64DEC - Base64 decode
	21.9 $WBB64ENC - Base64 encode
	21.10 $WBBAND - binary AND
	21.11 $WBBOR - binary OR
	21.12 $WBBXOR - binary XOR
	21.13 $WBCACHE - cache content
	21.14 $WBCALC - calculate math expression
	21.15 $WBCAPTCHA - show text as captcha
	21.16 $WBCASE - select case (switch)
	21.17 $WBCID - mail content ID
	21.18 $WBDCALC - calculate date
	21.19 $WBDIR - list directory
	21.20 $WBDV - decrement value
	21.21 $WBE - environment variable
	21.22 $WBERR - simulates an error
	21.23 $WBESC - URL encode string
	21.24 $WBFN
	21.24.1 ASC - character's ASCII code
	21.24.2 BIN - convert decimal number to binary
	21.24.3 CHR - print character with specified ASCII code
	21.24.4 DATE - current system date
	21.24.5 DAY - current day of the month
	21.24.6 FDT - date and time in specified format
	21.24.7 HEX - convert decimal number to hexadecimal
	21.24.8 HTPASS - password used for authentication
	21.24.9 HTUSER - user name used for authentication
	21.24.10 INT - integer portion of number
	21.24.11 LCS - to lowercase
	21.24.12 MONTH - current month
	21.24.13 OCT - convert decimal number to octal
	21.24.14 RND - random number
	21.24.15 SECONDS - seconds elapsed since midnight
	21.24.16 SQR - square root
	21.24.17 TIME - current system time
	21.24.18 UCS - to uppercase
	21.24.19 UNI - convert UTF-8 text to Unicode
	21.24.20 USER - current database user name
	21.24.21 USERDATA - retrieve value of WB_UserData
	21.24.22 UTF - covert text to UTF-8
	21.24.23 WEEKDAYN - day of the week (numeric value)
	21.24.24 WEEKDAYS - day of the week (string value)
	21.24.25 YEAR - current year

	21.25 $WBFOR - unconditional (for...next) loop
	21.26 $WBFOREACH - loop through array elements
	21.27 $WBFSIZE - file size
	21.28 $WBFTIME - file time
	21.29 $WBFUP - bytes uploaded
	21.30 $WBFUT - bytes total
	21.31 $WBGETATOM - get Atom feed
	21.32 $WBGC - get cookie
	21.33 $WBGETRSS - get RSS feed
	21.34 $WBGETURL - get data from URL (GET method)
	21.35 $WBGETV - get value of WB variable or array element
	21.36 $WBGETXML - get XML
	21.37 $WBIF - conditionally execute statements
	21.38 $WBINC - include file
	21.39 $WBIRUN - execute inline script
	21.40 $WBIV - increment value
	21.41 $WBJSON - get value of JSON object
	21.42 $WBJSONELEM - get element names of JSON object
	21.43 $WBJSONLEN - length of JSON object
	21.44 $WBPOSTURL - get data from URL (POST method)
	21.45 $WBRENDER - process WhizBase code
	21.46 $WBRINC - include file
	21.47 $WBRNDSTR - randomly generated string
	21.48 $WBROUND - rounds number value to specified number of decimal places
	21.49 $WBRRV - read and render configuration variable
	21.50 $WBRUN - execute external script
	21.51 $WBRV - read configuration variable
	21.52 $WBSETV - set value of WB variable
	21.53 $WBSPLIT - convert string to array
	21.54 $WBSUB - execute sub-routine
	21.55 $WBUNESC - decode URL-encoded string
	21.56 $WBUNTIL - loop until a condition becomes True
	21.57 $WBURL - generate navigation url
	21.58 $WBVDHR - virtual directory home reference
	21.59 $WBWHILE - loop while a condition is True
	21.60 $WBXCHNAMES - XML node child node names
	21.61 $WBXMLHTTP - get data from URL
	21.62 $WBXPATH – Xpath
	21.63 DB related functions
	21.63.1 $WBDetail - show values of all fields
	21.63.2 $WBF - show field value
	21.63.3 $WBFC - show URL-encoded field value
	21.63.4 $WBFF - show formated field value
	21.63.5 $WBFU - show field value as UTF-8
	21.63.6 $WBP - recordset properties
	21.63.7 $WBRF - show field value with processing WhizBase code
	21.63.8 $WBSR - sub report
	21.63.9 $WBSRQ - sub report with SQL where clause

	21.64 INI file functions
	21.64.1 $WBGS - get INI section
	21.64.2 $WBGV - get INI variable

	21.65 Request related functions
	21.65.1 $WBV - request variable
	21.65.2 $WBVA - separated list of request variables
	21.65.3 $WBVC - URL-encoded request variable
	21.65.4 $WBVR - unprocessed request variable
	21.65.5 $WBVS - multi-value variable separated as QUERY_STRING
	21.65.6 $WBVSC - multi-value variable separated as QUERY_STRING and URL-encoded

	21.66 Session related functions
	21.66.1 $WBGETS - get value of session variable
	21.66.2 $WBSETS - set value of session variable

	21.67 String manipulation functions
	21.67.1 $WBCNL - clear new line
	21.67.2 $WBCSTR - count string appearances
	21.67.3 $WBFORMAT - format text
	21.67.4 $WBHE - HTML entity
	21.67.5 $WBINDOF - index of
	21.67.6 $WBLEFT - left substring
	21.67.7 $WBLEN - string length
	21.67.8 $WBLINDOF - last index of
	21.67.9 $WBMID - substring at the specified location
	21.67.10 $WBMREPL - multi replace string
	21.67.11 $WBREPL - replace string
	21.67.12 $WBRIGHT - right substring
	21.67.13 $WBRXE - execute a regular expression
	21.67.14 $WBRXR - regular expression replace
	21.67.15 $WBTRIM - removes both leading and trailing spaces

	21.68 Encryption functions
	21.68.1 $WBDECRYPT - decrypt encrypted string
	21.68.2 $WBENCRYPT - encrypt a string
	21.68.3 $WBHASH - calculate hash/digest
	21.68.4 $WBSXOR - simple XOR encryption/decryption

	22. Variables
	22.1 FormFields variables - Subsection [FormFields]
	22.1.1 WB_AllowMultipart - accept uploaded files
	22.1.2 WB_AppendMode - append report to existing file
	22.1.3 WB_Command - the action to be performed by WhizBase
	22.1.3.1 Add - A
	22.1.3.2 Add DB user or group - AU
	22.1.3.3 Add DB user to group - AG
	22.1.3.4 Change DB user password - CP
	22.1.3.5 Compact database - CD
	22.1.3.6 Delete - D
	22.1.3.7 Delete DB user from group - DG
	22.1.3.8 Delete DB user or group - DU
	22.1.3.9 Delete file - DF
	22.1.3.10 Mail to list of recipients - L
	22.1.3.11 Multi update - MU
	22.1.3.12 Personalized email - P
	22.1.3.13 Query - Q
	22.1.3.14 Read DB permissions - RP
	22.1.3.15 Render - R (default)
	22.1.3.16 Send file - SF
	22.1.3.17 Send SMS - SMS
	22.1.3.18 Set DB permissions - SP
	22.1.3.19 Test - T
	22.1.3.20 Update - U
	22.1.3.21 Write to file - WF

	22.1.4 WB_Config
	22.1.5 WB_Defaults - set the default values for request variables
	22.1.6 WB_Destination - set the file name for saving the output
	22.1.7 WB_Forced - force values for request variables
	22.1.8 WB_FULID - generate unique form upload ID
	22.1.9 WB_HideLogin - scramble login data in navigation URL
	22.1.10 WB_Required - list of required request variables
	22.1.11 WB_ShowLogo - display powered by WhizBase logo
	22.1.12 WB_SysVarByForm - allow system variables (wb_) set as request variables (by form)
	22.1.13 WB_TempName - report template file name
	22.1.14 WB_TimeOut - set script time-out interval
	22.1.15 WB_UseEscapes - use escape sequences for special WB characters
	22.1.16 WB_UserData - user defined content
	22.1.17 WB_ValDelimiter - delimiter for wb_defaults and wb_forced
	22.1.18 Access control
	22.1.18.1 HTAccess File - configuration file for authentication
	22.1.18.1.1 WB_AuthType - authentication method
	22.1.18.1.2 WB_LoginPage - file name of login page for cookie authentication
	22.1.18.1.3 WB_Realm - realm for basic and digest authentication
	22.1.18.1.4 WB_Scramble - scramble (hide) password(s) stored in htaccess file

	22.1.18.2 WB_HTAccess - location of configuration file for authentication
	22.1.18.3 WB_HTPass - authentication password
	22.1.18.4 WB_HTUsr - authentication user name
	22.1.18.5 WB_IPListFile - location of file containing list of (dis)allowed IP address ranges

	22.1.19 Database
	22.1.19.1 WB_AddJoker - position of automatically added wildcards
	22.1.19.2 WB_AndOr - condition concatenation type
	22.1.19.3 WB_BaseName - name of the database used
	22.1.19.4 WB_CDate - set conversion of date/time and boolean fields
	22.1.19.5 WB_ChangeHFOn - report header/footer grouping field(s)
	22.1.19.6 WB_Connect - ISAM driver or ODBC DSN
	22.1.19.7 WB_DBFlds - field(s) included in recordset
	22.1.19.8 WB_DBLock - record locking type
	22.1.19.9 WB_DBObject - object used to access the database
	22.1.19.10 WB_ExactCount - count all records in recordset
	22.1.19.11 WB_Exclusive - open the database in exclusive mode
	22.1.19.12 WB_Execute - execute SQL statement(s)
	22.1.19.13 WB_Group - SQL clause "GROUP BY"
	22.1.19.14 WB_Having - SQL clause "HAVING"
	22.1.19.15 WB_InsBr - replace new line characters with

	22.1.19.16 WB_LCID - locale identifier ID
	22.1.19.17 WB_MatchCase - case sensitive search
	22.1.19.18 WB_MaxPages - maximum number of page links in report navigation
	22.1.19.19 WB_MaxRec - maximum number of records per page
	22.1.19.20 WB_MQ - make query (yes/no)
	22.1.19.21 WB_Null - update string for clearing field value
	22.1.19.22 WB_Order - SQL clause "ORDER BY"
	22.1.19.23 WB_Pass - database password
	22.1.19.24 WB_Predicate - SQL predicate
	22.1.19.25 WB_Query - SQL clause "WHERE"
	22.1.19.26 WB_RcdSet - SQL clause "FROM"
	22.1.19.27 WB_ReadOnly - open the database in read-only mode
	22.1.19.28 WB_SetADOCompatible - ANSI wildcard compatibility
	22.1.19.29 WB_ShowEmpty - display empty database fields as space
	22.1.19.30 WB_StartRec - internal page counter
	22.1.19.31 WB_System - system database (MDA/MDW) file name
	22.1.19.32 WB_UID - unique record identifier field(s)
	22.1.19.33 WB_Unicode - send field value as unicode
	22.1.19.34 WB_UniFTS - field(s) to be included in Universal Query Search
	22.1.19.35 WB_UniQS - string to be searched for in Universal Query Search
	22.1.19.36 WB_WC - database wildcard character for LIKE comparison
	22.1.19.37 WB_WholeWord - whole word search
	22.1.19.38 WB_Usr - database user name
	22.1.19.39 WBF_field - sending field values as request variables

	22.1.20 DB administering (DAO only)
	22.1.20.1 WB_DBAddData - permission for adding records to the database
	22.1.20.2 WB_DBAdmin - permission for administering the database
	22.1.20.3 WB_DBDelData - permission for deletinging records from the database
	22.1.20.4 WB_DBEditData - permission for updating records in the database
	22.1.20.5 WB_DBGroup - name of the database users' group
	22.1.20.6 WB_DBModDes - permission for modifying the database structure
	22.1.20.7 WB_DBNewPass - new database password
	22.1.20.8 WB_DBNPassCh - control value of the new password
	22.1.20.9 WB_DBOldPass - old database password
	22.1.20.10 WB_DBReadData - permission for reading records from the database
	22.1.20.11 WB_DBReadDes - permission for reading records the database design (structure)
	22.1.20.12 WB_DBUser - database user name for administering
	22.1.20.13 WB_PID - personal identification

	22.1.21 Error reporting
	22.1.21.1 WB_ErrFile - template for error reports
	22.1.21.2 WB_ErrMail - email address at the end of error message

	22.1.22 File related (WF and DF commands)
	22.1.22.1 WB_FileName - file name for DF and WF commands
	22.1.22.2 WB_KeyName - variable name(s) for WF command
	22.1.22.3 WB_KeyValue - variable value(s) for WF command
	22.1.22.4 WB_Section - file section for WF command
	22.1.22.5 WB_Separator - character used to separate different keys and different values for WF command

	22.1.23 HTTP
	22.1.23.1 WB_AddCookie - name and value of the cookie to be added/modified
	22.1.23.2 WB_ContentType - value for HTTP Content-Type: clause
	22.1.23.3 WB_HTTPHeader - additional clauses for HTTP header
	22.1.23.4 WB_Redirect - the URL for 301 and 302 redirect (HTTP header Location: clause)

	22.1.24 Logging
	22.1.24.1 WB_Debug - file name for storing the debug information
	22.1.24.2 WB_Log - file name for storing the log data
	22.1.24.3 WB_LogData - data to be stored in log
	22.1.24.4 WB_LogTemp - template for log record

	22.1.25 Mail related
	22.1.25.1 WB_Attach - mail attachment
	22.1.25.2 WB_AttachField - name of field containing attachment file name(s)
	22.1.25.3 WB_BCC - email BCC address(es)
	22.1.25.4 WB_BCCField - database field name containing email BCC address(es)
	22.1.25.5 WB_CC - email CC address(es)
	22.1.25.6 WB_Embed - the name(s) of the file(s) to be embedded in the email
	22.1.25.7 WB_From - email from address
	22.1.25.8 WB_MailAuth - mail server authentication type
	22.1.25.9 WB_MailPass - mail server authentication password
	22.1.25.10 WB_MailPort - mail server SMTP port
	22.1.25.11 WB_MailServer - mail server name or IP address
	22.1.25.12 WB_MailSSL - mail server authentication type
	22.1.25.13 WB_MailUser - mail server authentication user name
	22.1.25.14 WB_PlainText - plain text email messsage part
	22.1.25.15 WB_Subject - email subject
	22.1.25.16 WB_To - email TO address(es)
	22.1.25.17 WB_ToField - database field name containing email TO address(es)

	22.1.26 Sessions
	22.1.26.1 WB_ClearSessions - clear incative (expired) sessions
	22.1.26.2 WB_LogOffSession - clear current session
	22.1.26.3 WB_UseSessions - use server sessions

	22.1.27 SMS
	22.1.27.1 WB_SMSBR - SMS baud rate
	22.1.27.2 WB_SMSC - SMS center number
	22.1.27.3 WB_SMSCharacter - SMS character type
	22.1.27.4 WB_SMSDB - SMS data bits
	22.1.27.5 WB_SMSField - database field name containing phone number of text message recipient
	22.1.27.6 WB_SMSIgnoreErrors - ignore SMS error messages
	22.1.27.7 WB_SMSNumber - SMS recipient phone number
	22.1.27.8 WB_SMSParity - SMS parity type
	22.1.27.9 WB_SMSPIN - SMS Personal Identity Number (PIN)
	22.1.27.10 WB_SMSPort - SMS modem COM port
	22.1.27.11 WB_SMSSB - SMS stop bits size
	22.1.27.12 WB_SMSSD - SMS send delay
	22.1.27.13 WB_SMSSR - SMS send retry
	22.1.27.14 WB_SMSTO - SMS timeout

	22.2 MsgAndLbl variables - Subsection [MsgAndLbl]
	22.2.1 WB_AddToURL - additional request variables for navigation URLs formated as QUERY_STRING
	22.2.2 WB_DigitDir - directory containing image files for graphic navigation links
	22.2.3 WB_Style - navigation links CSS style
	22.2.4 WBL_FirstPage - link text for First page link
	22.2.5 WBL_LastPage - link text for Last page link
	22.2.6 WBL_NextPage - link text for Next page link
	22.2.7 WB_PassVars - comma delimited list of additional request variables for navigation URLs
	22.2.8 WBL_PrevPage - link text for Previous page link
	22.2.9 WBM_Deleted - message template for reporting deleted records
	22.2.10 WBM_NoMatch - text for reporting that search returned no records

	22.3 Upload section variables - Subsection [Upload]
	22.3.1 WB_BaseUrl - URL prefix to be added to uploaded file name
	22.3.2 WB_Disallow - list of file types (extensions) that can not be uploaded
	22.3.3 WB_MaxFSize - maximum size for a single uploaded file
	22.3.4 WB_Overwrite - overwrite existing file with uploaded one
	22.3.5 WB_UploadDir - destination directory for uploaded files
	22.3.6 WB_UploadLog - file name for logging upload activities

	23. Error messages
	23.1 Common system errors
	23.1.1 Error 5 - Invalid procedure call or argument
	23.1.2 Error 13 - Type mismatch
	23.1.3 Error 75 - Path/File access error
	23.1.4 Error 429 - ActiveX component can't create object.

	23.2 Database errors
	23.2.1 Error 3027 - Driver: Text; produced following error: Can't update. Database or object is read-only.
	23.2.2 Error 3051 - The Microsoft Jet database engine cannot open the file '<file name>'. It is already opened exclusively by another user, or you need permission to view its data.
	23.2.3 Error 3061 - Too few parameters. Expected <number>
	23.2.4 Error 3146 - ODBC--call failed.
	23.2.5 Error 3170 - Couldn't find installable ISAM.
	23.2.6 Error 3265 - Item not found in this collection.
	23.2.7 Error 3633 - Driver: MS Access; produced following error: Can't load DLL: 'MSJET35.DLL'

	23.3 WhizBase specific errors
	23.3.1 Error 5010 - Duplicate value in UID!
	23.3.2 Error 5011 - Empty mailing list recordset!
	23.3.3 Error 5012 - Error reading system file <file name>!
	23.3.4 Error 5013 - Illegal referring page!
	23.3.5 Error 5014 - Illegal unique identifier! Query returned more than one record!
	23.3.6 Error 5015 - Illegal unique identifier! Query returned no records!
	23.3.7 Error 5016 - Illegal use of unregistered trial version of WhizBase engine!
	23.3.8 Error 5017 - Incorrect password!
	23.3.9 Error 5018 - Invalid command string!
	23.3.10 Error 5019 - Invalid data passed to UrlDecode() function.
	23.3.11 Error 5020 - Invalid data passed to UrlEncode() function.
	23.3.12 Error 5021 - Invalid value for True/False field!
	23.3.13 Error 5022 - New password check failed!
	23.3.14 Error 5023 - No data received! Nothing to add to database!
	23.3.15 Error 5024 - Query string empty! Unable to identify record!
	23.3.16 Error 5025 - Record(s) can't be added; no insert permission on <recordset>!
	23.3.17 Error 5026 - Record(s) can't be deleted; no delete permission on <recordset>!
	23.3.18 Error 5027 - Record(s) can't be edited; no update permission on <recordset>!
	23.3.19 Error 5028 - Record(s) can't be read; no read permission on <recordset>!
	23.3.20 Error 5029 - Required form field 'WB_BaseName' missing!
	23.3.21 Error 5030 - Required form field 'WB_Pass' missing!
	23.3.22 Error 5031 - Required form field 'WB_RcdSet' missing!
	23.3.23 Error 5032 - Required form field 'WB_UID' missing! Unable to identify record!
	23.3.24 Error 5033 - Required form field 'WB_Usr' missing!
	23.3.25 Error 5034 - Required form field(s) missing!
	23.3.26 Error 5035 - Required WB_UID member field <field name> missing! Unable to identify record!
	23.3.27 Error 5036 - Syntax error in $WBFN: <function>!
	23.3.28 Error 5037 - Test mode disabled!
	23.3.29 Error 5038 - Unable to execute mail operation! WB_MailServer missing!
	23.3.30 Error 5039 - Unable to select mail list mode. Received values for both WB_ToField and WB_BCCField. Please remove one!
	23.3.31 Error 5040 - User not found!
	23.3.32 Error 5041 - Unable to send mail to mailing list. Both WB_ToField and WB_BCCField are empty!
	23.3.33 Error 5042 - Report template file <TemplateName> not found!
	23.3.34 Error 5043 - Required field WB_Config missing!
	23.3.35 Error 5044 - Configuration file <ConfigName> not found!
	23.3.36 Error 5045 - Absolute path not allowed! File name: <FileName>
	23.3.37 Error 5046 - Error in script file <ScriptFile>
	23.3.38 Error 5047 - Multipart content not allowed!
	23.3.39 Error 5048 - Server <ServerName> does not support file upload!
	23.3.40 Error 5049 - File too large!
	23.3.41 Error 5050 - Ilegal file type!
	23.3.42 Error 5051 - Ilegal scripting language!
	23.3.43 Error 5052 - Ilegal script method!
	23.3.44 Error 5053 - Server <server name> does not support WBSP!
	23.3.45 Error 5054 - WB_Order does not start with WB_ChangeHFOn
	23.3.46 Error 5055 - This WBSP project is not registered for use with <HostName> virtual host!
	23.3.47 Error 5056 - $WBMREPL arguments do not match!
	23.3.48 Error 5057 - Required form field WB_FileName missing!
	23.3.49 Error 5058 - Required form field WB_KeyName missing!
	23.3.50 Error 5059 - Required form field WB_Section missing!
	23.3.51 Error 5060 - Unable to delete file <filename>! File not found
	23.3.52 Error 5061 - Error writing file <filename>
	23.3.53 Error 5062 - Server does not support writing files!
	23.3.54 Error 5063 - Server does not support deleting files!
	23.3.55 Error 5064 - Wrong IP range string:<IPAddrRange>
	23.3.56 Error 5065 - IP authentication failed!
	23.3.57 Error 5066 - WB_UID for multi update must not contain field list! Unable to identify records!
	23.3.58 Error 5067 - Different size of WBF form field arrays! Field <field name>.
	23.3.59 Error 5068 - Invalid IP address <IP Address>! Dotted decimal values must be between 0 and 255
	23.3.60 Error 5069 - WB_KeyName and WB_KeyValue arrays do not match!
	23.3.61 Error 5070 - Invalid value for the WB_DBObject!
	23.3.62 Error 5071 - Invalid value for the ADO connection string or WB_DBObject!
	23.3.63 Error 5072 - Security string missing
	23.3.64 Error 5073 - Invalid extension
	23.3.65 Error 5074 - Invalid numeric argument for $WBErr function! Use numbers from 6000 to 65535!
	23.3.66 Error 5075 - Syntax error
	23.3.67 Error 5076 - WB_Redirect required!
	23.3.68 Error 5077 - Too many instances for server <server name>!
	23.3.69 Error 5078 - $WBCASE function syntax error
	23.3.70 Error 5079 - Script time out error
	23.3.71 Error 5080 - Invalid time out interval
	23.3.72 Error 5081 - Invalid assign method! Use WBAAdd[] function.
	23.3.73 Error 5082 - Invalid path!
	23.3.74 Error 5083 - Empty SMS list recordset!
	23.3.75 Error 5084 - Required form field 'WB_SMSPort' missing!
	23.3.76 Error 5085 - Invalid character passed to WBCAPTCHA function!
	23.3.77 Error 5086 - Duplicate Sub Definition! Sub name: nameofsubroutine!
	23.3.78 Error 5087 - Undefined subroutine nameofsubroutine!
	23.3.79 Error 5088 - Invalid hash algorithm!
	23.3.80 Error 5089 - Invalid algorithm!
	23.3.81 Error 5090 - Unrecognized encrypted format! Check the input type!
	23.3.82 Error 5091 - Error processing JSON
	23.3.83 Error 5092 - Missing parameter function name in $WBIRUN function!

	24. Appendixes
	24.1 Named Formats (format string definitions)
	24.2 User-Defined Formats (format string definitions)
	24.3 Format expression rules
	24.4 HTML form and input elements
	24.4.1 HTML from
	24.4.2 Input elements

	24.5 SQL patterns

